Tuning Self-Polarization of Epitaxial BiFeO3 Thin Films through Interface Effects.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-08 DOI:10.1021/acsami.4c14995
Guoyang Shen, Liwen Zhu, Zhiguo Wang, Jie Zhao, Longlong Shu
{"title":"Tuning Self-Polarization of Epitaxial BiFeO<sub>3</sub> Thin Films through Interface Effects.","authors":"Guoyang Shen, Liwen Zhu, Zhiguo Wang, Jie Zhao, Longlong Shu","doi":"10.1021/acsami.4c14995","DOIUrl":null,"url":null,"abstract":"<p><p>Interface effects and strain engineering have emerged as critical strategies for modulating polarization and internal electric fields in ferroelectric materials, playing a vital role in exploring coupling mechanisms and developing ferroelectric diode devices. In this study, we selected BiFeO<sub>3</sub> as a representative ferroelectric material and utilized interface engineering to control its polarization. By precisely manipulating the atomic stacking sequence at the interface, we influenced the electrostatic potential step across the interface, resulting in a bias voltage in the ferroelectric hysteresis loops that defined the ferroelectric state. The introduction of strain and strain gradients through a lattice mismatch between the film and substrate generated a flexoelectric field of approximately 3 MV/m, significantly impacting the internal electric field. Additionally, we successfully modified the Schottky barrier height within BiFeO<sub>3</sub> films through the synergy and competition between interfacial and flexoelectric effects. This work expands the potential applications of thin-film flexoelectricity in Schottky diodes, sensors, and memory devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"70038-70046"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14995","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interface effects and strain engineering have emerged as critical strategies for modulating polarization and internal electric fields in ferroelectric materials, playing a vital role in exploring coupling mechanisms and developing ferroelectric diode devices. In this study, we selected BiFeO3 as a representative ferroelectric material and utilized interface engineering to control its polarization. By precisely manipulating the atomic stacking sequence at the interface, we influenced the electrostatic potential step across the interface, resulting in a bias voltage in the ferroelectric hysteresis loops that defined the ferroelectric state. The introduction of strain and strain gradients through a lattice mismatch between the film and substrate generated a flexoelectric field of approximately 3 MV/m, significantly impacting the internal electric field. Additionally, we successfully modified the Schottky barrier height within BiFeO3 films through the synergy and competition between interfacial and flexoelectric effects. This work expands the potential applications of thin-film flexoelectricity in Schottky diodes, sensors, and memory devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信