Xiaoying Hu, Daisong Jiang, Zheng Zhang, Zhenmei An
{"title":"PPAR-α regulates metabolic remodelling and participates in myocardial fibrosis in patients with atrial fibrillation of rheumatic heart disease.","authors":"Xiaoying Hu, Daisong Jiang, Zheng Zhang, Zhenmei An","doi":"10.5114/aoms/181134","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study will explore the correlation of peroxisome proliferator activated receptor-α (PPAR-α) regulation of metabolic remodelling in the myocardial fibrosis of atrial fibrillation (AF) in rheumatic heart disease.</p><p><strong>Material and methods: </strong>The left atrial appendage tissues were evaluated by Masson staining for fibrosis degree, and Western Blot was used to detect the expression of proteins related to glucose metabolism disorder, lipid metabolism abnormality, and mitochondrial dysfunction. The myocardial fibroblasts were established by stimulation with ANG II, and the PPAR-α agonist GW7647 was administered. The changes of phenotype transformation of myocardial fibroblasts were detected by cellular immunofluorescence, the secretion level of supernatant collagen was detected by ELISA. Finally, the correlation between PPAR-α protein expression and myocardial fibrosis was analysed and a conclusion was drawn.</p><p><strong>Results: </strong>Masson staining showed that the degree of myocardial fibrosis in patients with AF was significantly increased; WB analysis showed that there were statistically significant differences in protein expression related to glucose metabolism disorder, lipid metabolism abnormality, and mitochondrial dysfunction. There was a correlation between PPAR-α protein expression and myocardial fibrosis (<i>r</i> = -0.5322, <i>p</i> < 0.0001). After stimulation with PPAR-α agonist GW7647, the phenotypic differentiation of myocardial fibro-blasts into myofibroblasts was inhibited. The protein expression related to mitochondrial dysfunction was statistically different.</p><p><strong>Conclusions: </strong>This study found that there is a negative correlation between the expression of PPAR-α protein and myocardial fibrosis in rheumatic heart disease AF, which plays a protective role. PPAR-α may participate in the pathogenesis of myocardial fibrosis in rheumatic heart disease AF by regulating glucose metabolism, lipid metabolism, and mitochondrial function.</p>","PeriodicalId":8278,"journal":{"name":"Archives of Medical Science","volume":"20 5","pages":"1461-1471"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/aoms/181134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study will explore the correlation of peroxisome proliferator activated receptor-α (PPAR-α) regulation of metabolic remodelling in the myocardial fibrosis of atrial fibrillation (AF) in rheumatic heart disease.
Material and methods: The left atrial appendage tissues were evaluated by Masson staining for fibrosis degree, and Western Blot was used to detect the expression of proteins related to glucose metabolism disorder, lipid metabolism abnormality, and mitochondrial dysfunction. The myocardial fibroblasts were established by stimulation with ANG II, and the PPAR-α agonist GW7647 was administered. The changes of phenotype transformation of myocardial fibroblasts were detected by cellular immunofluorescence, the secretion level of supernatant collagen was detected by ELISA. Finally, the correlation between PPAR-α protein expression and myocardial fibrosis was analysed and a conclusion was drawn.
Results: Masson staining showed that the degree of myocardial fibrosis in patients with AF was significantly increased; WB analysis showed that there were statistically significant differences in protein expression related to glucose metabolism disorder, lipid metabolism abnormality, and mitochondrial dysfunction. There was a correlation between PPAR-α protein expression and myocardial fibrosis (r = -0.5322, p < 0.0001). After stimulation with PPAR-α agonist GW7647, the phenotypic differentiation of myocardial fibro-blasts into myofibroblasts was inhibited. The protein expression related to mitochondrial dysfunction was statistically different.
Conclusions: This study found that there is a negative correlation between the expression of PPAR-α protein and myocardial fibrosis in rheumatic heart disease AF, which plays a protective role. PPAR-α may participate in the pathogenesis of myocardial fibrosis in rheumatic heart disease AF by regulating glucose metabolism, lipid metabolism, and mitochondrial function.
期刊介绍:
Archives of Medical Science (AMS) publishes high quality original articles and reviews of recognized scientists that deal with all scientific medicine. AMS opens the possibilities for young, capable scientists. The journal would like to give them a chance to have a publication following matter-of-fact, professional review by outstanding, famous medical scientists. Thanks to that they will have an opportunity to present their study results and/or receive useful advice about the mistakes they have made so far.
The second equally important aim is a presentation of review manuscripts of recognized scientists about the educational capacity, in order that young scientists, often at the beginning of their scientific carrier, could constantly deepen their medical knowledge and be up-to-date with current guidelines and trends in world-wide medicine. The fact that our educational articles are written by world-famous scientists determines their innovation and the highest quality.