Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Macromolecular Rapid Communications Pub Date : 2025-04-01 Epub Date: 2024-12-08 DOI:10.1002/marc.202400762
Thi En Trinh, Kyosun Ku, Hyeonuk Yeo
{"title":"Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure.","authors":"Thi En Trinh, Kyosun Ku, Hyeonuk Yeo","doi":"10.1002/marc.202400762","DOIUrl":null,"url":null,"abstract":"<p><p>Side-chain liquid-crystal epoxy polymers (SCLCEPs) are valued for their unique properties, which combine LC side chains with epoxide-based polyether main chains for ordered molecular arrangements. They have high thermal conductivity and optical properties due to their low polydispersity and high crystallinity. Achieving optimal thermal conductivity in SCLCEPs involves addressing factors such as mesogen nature, polymer design, and alignment within the polymer structure. Balancing these factors enhances their suitability for heat dissipation in advanced materials. In this study, SCLCEPs with a polyethylene glycol backbone and laterally arranged mesogens are synthesized via anionic ring opening of mesogenic epoxides with unique LC phases. These monomers, which feature biphenyl mesogens attached to glycidyloxy ether and different alkyl chain lengths on the other side, is designed to facilitate mesogen self-assembly and interaction. The resulting polymers exhibited higher crystallinity and LC phases than the monomers. Notably, because of their LC nature, their thermal conductivity exceeds 0.48 W·m<sup>-1</sup> K<sup>-1</sup> and increases with shortened alkyl chain lengths, reaching 0.57 W·m<sup>-1</sup> K<sup>-1</sup>. This research expands the applications of SCLCEPs in advanced fields requiring enhanced thermal properties.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400762"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400762","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Side-chain liquid-crystal epoxy polymers (SCLCEPs) are valued for their unique properties, which combine LC side chains with epoxide-based polyether main chains for ordered molecular arrangements. They have high thermal conductivity and optical properties due to their low polydispersity and high crystallinity. Achieving optimal thermal conductivity in SCLCEPs involves addressing factors such as mesogen nature, polymer design, and alignment within the polymer structure. Balancing these factors enhances their suitability for heat dissipation in advanced materials. In this study, SCLCEPs with a polyethylene glycol backbone and laterally arranged mesogens are synthesized via anionic ring opening of mesogenic epoxides with unique LC phases. These monomers, which feature biphenyl mesogens attached to glycidyloxy ether and different alkyl chain lengths on the other side, is designed to facilitate mesogen self-assembly and interaction. The resulting polymers exhibited higher crystallinity and LC phases than the monomers. Notably, because of their LC nature, their thermal conductivity exceeds 0.48 W·m-1 K-1 and increases with shortened alkyl chain lengths, reaching 0.57 W·m-1 K-1. This research expands the applications of SCLCEPs in advanced fields requiring enhanced thermal properties.

侧链液晶环氧聚合物的导热性能:介观结构的影响。
侧链液晶环氧聚合物(SCLCEPs)是一种将LC侧链与环氧基聚醚主链结合在一起形成有序分子结构的聚合物。由于它们的低多分散性和高结晶度,它们具有高导热性和光学性能。在scclceps中实现最佳导热性需要解决一些因素,如介质性质、聚合物设计和聚合物结构内的排列。平衡这些因素增强了它们在先进材料中的散热适用性。在这项研究中,通过阴离子开环合成了具有聚乙二醇骨架和横向排列的介元的scclceps,这些介元具有独特的LC相。这些单体的特点是联苯介质连接到缩水甘油氧基醚上,另一侧是不同的烷基链长度,旨在促进介质自组装和相互作用。所得聚合物比单体具有更高的结晶度和LC相。值得注意的是,由于它们的LC性质,它们的导热系数超过0.48 W·m-1 K-1,并且随着烷基链长度的缩短而增加,达到0.57 W·m-1 K-1。本研究扩展了scclceps在需要增强热性能的先进领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信