Assessing the influence of green space morphological spatial pattern on urban waterlogging: A case study of a highly-urbanized city.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Wenli Zhang, Suixuan Qiu, Zhuochun Lin, Zhixin Chen, Yuchen Yang, Jinyao Lin, Shaoying Li
{"title":"Assessing the influence of green space morphological spatial pattern on urban waterlogging: A case study of a highly-urbanized city.","authors":"Wenli Zhang, Suixuan Qiu, Zhuochun Lin, Zhixin Chen, Yuchen Yang, Jinyao Lin, Shaoying Li","doi":"10.1016/j.envres.2024.120561","DOIUrl":null,"url":null,"abstract":"<p><p>The extensive expansion of impervious surfaces encroaches on green spaces and causes frequent urban waterlogging disasters. Previous studies have focused mainly on the influence of green space landscape pattern on waterlogging, with less attention given to green space morphological spatial pattern (MSPA). MSPA can be used to differentiate various types of land use morphologies from a microscopic perspective and reveal visualized spatial characteristics. Therefore, this study selected Shenzhen, a city with serious waterlogging problems, as the study area. The anthropogenic/natural environments and green space morphological spatial pattern were considered. Pearson correlation analysis and random forest regression were combined to investigate the influence of these drivers on the density of waterlogging hotspots and quantify the degree of importance for each driver. The results were supplemented with explanations using SHapley Additive exPlanations and Partial Dependence Plots. Pearson correlation analysis revealed that green space morphological spatial pattern, the proportion of green spaces, and the proportion of impervious surfaces were the dominant drivers. Additionally, the random forest regression showed that incorporating green space morphological spatial pattern and average tree height as potential drivers could strengthen the model's goodness-of-fit. While the proportion of impervious surfaces, the proportion of green spaces, and population density were important drivers, the green space morphological spatial pattern, specifically the \"loop\", \"edge\", and \"core\", was even more crucial and had an optimal design range. Therefore, green space morphological spatial pattern should be emphasized during the planning of \"sponge cities\" to maximize the ability of green spaces to mitigate waterlogging. In summary, our findings are expected to provide feasible suggestions for waterlogging control and green space planning.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120561"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120561","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive expansion of impervious surfaces encroaches on green spaces and causes frequent urban waterlogging disasters. Previous studies have focused mainly on the influence of green space landscape pattern on waterlogging, with less attention given to green space morphological spatial pattern (MSPA). MSPA can be used to differentiate various types of land use morphologies from a microscopic perspective and reveal visualized spatial characteristics. Therefore, this study selected Shenzhen, a city with serious waterlogging problems, as the study area. The anthropogenic/natural environments and green space morphological spatial pattern were considered. Pearson correlation analysis and random forest regression were combined to investigate the influence of these drivers on the density of waterlogging hotspots and quantify the degree of importance for each driver. The results were supplemented with explanations using SHapley Additive exPlanations and Partial Dependence Plots. Pearson correlation analysis revealed that green space morphological spatial pattern, the proportion of green spaces, and the proportion of impervious surfaces were the dominant drivers. Additionally, the random forest regression showed that incorporating green space morphological spatial pattern and average tree height as potential drivers could strengthen the model's goodness-of-fit. While the proportion of impervious surfaces, the proportion of green spaces, and population density were important drivers, the green space morphological spatial pattern, specifically the "loop", "edge", and "core", was even more crucial and had an optimal design range. Therefore, green space morphological spatial pattern should be emphasized during the planning of "sponge cities" to maximize the ability of green spaces to mitigate waterlogging. In summary, our findings are expected to provide feasible suggestions for waterlogging control and green space planning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信