Regulating the surface chemistry of covalent organic frameworks for enhancement cationic dye removal and identification.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Xiaoli Zhou, Wenjuan Lei, Xiaohuan Qin, Xiaofen Lai, Kun Hu, Shulin Zhao
{"title":"Regulating the surface chemistry of covalent organic frameworks for enhancement cationic dye removal and identification.","authors":"Xiaoli Zhou, Wenjuan Lei, Xiaohuan Qin, Xiaofen Lai, Kun Hu, Shulin Zhao","doi":"10.1007/s00216-024-05687-x","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous removal and identification of trace-level cationic dye pollutants from water is both important and challenging owing to their highly polar and complex sample matrices. In this study, three covalent organic frameworks (COFs) were synthesized using 2, 4, 6-triformylphloroglucinol with ethidium bromide (EB) containing positively charged groups, 3, 5-diaminobenzoic acid (DABA) containing negatively charged groups, and p-phenylenediamine (Pa) lacking charged groups. These were named EB-COFs, TpPa-1, and DP-COFs, respectively, and were employed as adsorbents for the extraction and identification of cationic dyes. The adsorption performance of the three COFs toward methylene blue (MB) and crystal violet (CV) was investigated. By incorporating carboxyl groups into DP-COFs, the surface chemistry of the adsorbent was effectively tailored, enabling complete exploitation of selective cationic sites. This facilitated dynamic interactions with cationic dyes through multiple adsorption mechanisms, including electrostatic, π-π, and H-bonding interactions. DP-COFs exhibited high adsorption capacities for MB and CV, achieving 383 and 326 mg g<sup>-1</sup>, respectively. The adsorption behavior was further analyzed using adsorption isothermals, kinetics, and thermodynamics. Moreover, DP-COFs were employed as a matrix in laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) to adsorb and directly identify both cationic dyes without the need for an elution process. This approach demonstrated high sensitivity, high reproducibility, low background interference, and excellent salt tolerance. The limits of detection for MB and CV were 0.12 and 0.04 ng mL<sup>-1</sup>, respectively, representing improvements of 166-fold and 225-fold compared with using DP-COFs solely as a matrix. Recovery rates of both dyes in spiked industrial wastewater and lake water samples ranged from 81.4 to111.1% with RSDs of 1.9-6.3%. These results highlight the high reliability of the proposed method.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05687-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous removal and identification of trace-level cationic dye pollutants from water is both important and challenging owing to their highly polar and complex sample matrices. In this study, three covalent organic frameworks (COFs) were synthesized using 2, 4, 6-triformylphloroglucinol with ethidium bromide (EB) containing positively charged groups, 3, 5-diaminobenzoic acid (DABA) containing negatively charged groups, and p-phenylenediamine (Pa) lacking charged groups. These were named EB-COFs, TpPa-1, and DP-COFs, respectively, and were employed as adsorbents for the extraction and identification of cationic dyes. The adsorption performance of the three COFs toward methylene blue (MB) and crystal violet (CV) was investigated. By incorporating carboxyl groups into DP-COFs, the surface chemistry of the adsorbent was effectively tailored, enabling complete exploitation of selective cationic sites. This facilitated dynamic interactions with cationic dyes through multiple adsorption mechanisms, including electrostatic, π-π, and H-bonding interactions. DP-COFs exhibited high adsorption capacities for MB and CV, achieving 383 and 326 mg g-1, respectively. The adsorption behavior was further analyzed using adsorption isothermals, kinetics, and thermodynamics. Moreover, DP-COFs were employed as a matrix in laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) to adsorb and directly identify both cationic dyes without the need for an elution process. This approach demonstrated high sensitivity, high reproducibility, low background interference, and excellent salt tolerance. The limits of detection for MB and CV were 0.12 and 0.04 ng mL-1, respectively, representing improvements of 166-fold and 225-fold compared with using DP-COFs solely as a matrix. Recovery rates of both dyes in spiked industrial wastewater and lake water samples ranged from 81.4 to111.1% with RSDs of 1.9-6.3%. These results highlight the high reliability of the proposed method.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 1,4-dioxane
阿拉丁 acetic acid
阿拉丁 acetone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信