{"title":"Analysis of a time filtered finite element method for the unsteady inductionless MHD equations","authors":"Xiaodi Zhang, Jialin Xie, Xianzhu Li","doi":"10.1007/s10444-024-10215-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a time filtered finite element method for the unsteady inductionless magnetohydrodynamic (MHD) equations. The method uses the semi-implicit backward Euler scheme with a time filter in time and adopts the standard inf-sup stable fluid pairs to discretize the velocity and pressure, and the inf-sup stable face-volume elements for solving the current density and electric potential in space. Since the time filter for the velocity is added as a separate post-processing step, the scheme can be easily incorporated into the existing backward Euler code and improves the time accuracy from first order to second order. The unique solvability, unconditional energy stability, and charge conservativeness of the scheme are also proven. In terms of the energy arguments, we establish the error estimates for the velocity, current density, and electric potential. Numerical experiments are performed to verify the theoretical analysis.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10215-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies a time filtered finite element method for the unsteady inductionless magnetohydrodynamic (MHD) equations. The method uses the semi-implicit backward Euler scheme with a time filter in time and adopts the standard inf-sup stable fluid pairs to discretize the velocity and pressure, and the inf-sup stable face-volume elements for solving the current density and electric potential in space. Since the time filter for the velocity is added as a separate post-processing step, the scheme can be easily incorporated into the existing backward Euler code and improves the time accuracy from first order to second order. The unique solvability, unconditional energy stability, and charge conservativeness of the scheme are also proven. In terms of the energy arguments, we establish the error estimates for the velocity, current density, and electric potential. Numerical experiments are performed to verify the theoretical analysis.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.