Analysis of a time filtered finite element method for the unsteady inductionless MHD equations

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Xiaodi Zhang, Jialin Xie, Xianzhu Li
{"title":"Analysis of a time filtered finite element method for the unsteady inductionless MHD equations","authors":"Xiaodi Zhang,&nbsp;Jialin Xie,&nbsp;Xianzhu Li","doi":"10.1007/s10444-024-10215-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a time filtered finite element method for the unsteady inductionless magnetohydrodynamic (MHD) equations. The method uses the semi-implicit backward Euler scheme with a time filter in time and adopts the standard inf-sup stable fluid pairs to discretize the velocity and pressure, and the inf-sup stable face-volume elements for solving the current density and electric potential in space. Since the time filter for the velocity is added as a separate post-processing step, the scheme can be easily incorporated into the existing backward Euler code and improves the time accuracy from first order to second order. The unique solvability, unconditional energy stability, and charge conservativeness of the scheme are also proven. In terms of the energy arguments, we establish the error estimates for the velocity, current density, and electric potential. Numerical experiments are performed to verify the theoretical analysis.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10215-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a time filtered finite element method for the unsteady inductionless magnetohydrodynamic (MHD) equations. The method uses the semi-implicit backward Euler scheme with a time filter in time and adopts the standard inf-sup stable fluid pairs to discretize the velocity and pressure, and the inf-sup stable face-volume elements for solving the current density and electric potential in space. Since the time filter for the velocity is added as a separate post-processing step, the scheme can be easily incorporated into the existing backward Euler code and improves the time accuracy from first order to second order. The unique solvability, unconditional energy stability, and charge conservativeness of the scheme are also proven. In terms of the energy arguments, we establish the error estimates for the velocity, current density, and electric potential. Numerical experiments are performed to verify the theoretical analysis.

非定常无感应MHD方程的时间滤波有限元分析
研究了求解非定常无感应磁流体动力学方程的时间滤波有限元方法。该方法在时间上采用带时间滤波器的半隐式后向欧拉格式,在空间上采用标准的中流稳定流体对离散速度和压力,在空间上采用中流稳定面体积元求解电流密度和电势。由于速度的时间滤波器是作为一个单独的后处理步骤添加的,因此该方案可以很容易地合并到现有的向后欧拉代码中,并将时间精度从一阶提高到二阶。证明了该方案的唯一可解性、无条件能量稳定性和电荷保守性。在能量参数方面,我们建立了速度、电流密度和电势的误差估计。通过数值实验验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信