Comprehensive Study of Near-Earth Asteroid 2024 MK: Testing Planetary Encounters as a Source for Surface Refreshing

Lauren E. McGraw, Cristina A. Thomas, Tim A. Lister, Becky J. Williams, Andy S. Rivkin, Bryan Holler and Leslie A. Young
{"title":"Comprehensive Study of Near-Earth Asteroid 2024 MK: Testing Planetary Encounters as a Source for Surface Refreshing","authors":"Lauren E. McGraw, Cristina A. Thomas, Tim A. Lister, Becky J. Williams, Andy S. Rivkin, Bryan Holler and Leslie A. Young","doi":"10.3847/2041-8213/ad9728","DOIUrl":null,"url":null,"abstract":"Near-Earth object 2024 MK was discovered on 2024 June 16, less than 2 weeks before it made a sub-lunar-distance close approach. This close approach provided an ideal opportunity to determine how planetary encounters affect asteroid surfaces in preparation for the numerous missions to (99942) Apophis during its close approach in 2029. We collected spectroscopic data before and after its close approach to determine if planetary encounters induce spectral changes due to surface refreshing. We used NASA’s Infrared Telescope Facility’s (IRTF) near-infrared spectrometer SpeX prism mode (0.7–2.5 μm) to observe 2024 MK pre and postapproach. We also observed the asteroid before its close approach using Las Cumbres Observatory’s FLOYDS visible spectrometer and after its close approach using IRTF’s SpeX long-wavelength cross-dispersed short grating mode, resulting in full spectral coverage from 0.32 to 4.2 μm. 2024 MK is an S-type asteroid that is compositionally most analogous to an L-ordinary chondrite. Spectral analysis of the 3 μm region indicates no surficial water or hydroxide within the level of noise. Band parameter analysis of the pre and postapproach data shows the planetary encounter did not induce any significant spectral changes, suggesting that surface refreshing did not occur on a measurable scale. Similar studies of other targets at smaller encounter distances are required to determine if the lack of spectral changes on 2024 MK indicates it was not close enough to Earth to affect its surface or if the spectral similarity pre and postapproach instead indicates planetary encounters do not cause surface refreshing.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Near-Earth object 2024 MK was discovered on 2024 June 16, less than 2 weeks before it made a sub-lunar-distance close approach. This close approach provided an ideal opportunity to determine how planetary encounters affect asteroid surfaces in preparation for the numerous missions to (99942) Apophis during its close approach in 2029. We collected spectroscopic data before and after its close approach to determine if planetary encounters induce spectral changes due to surface refreshing. We used NASA’s Infrared Telescope Facility’s (IRTF) near-infrared spectrometer SpeX prism mode (0.7–2.5 μm) to observe 2024 MK pre and postapproach. We also observed the asteroid before its close approach using Las Cumbres Observatory’s FLOYDS visible spectrometer and after its close approach using IRTF’s SpeX long-wavelength cross-dispersed short grating mode, resulting in full spectral coverage from 0.32 to 4.2 μm. 2024 MK is an S-type asteroid that is compositionally most analogous to an L-ordinary chondrite. Spectral analysis of the 3 μm region indicates no surficial water or hydroxide within the level of noise. Band parameter analysis of the pre and postapproach data shows the planetary encounter did not induce any significant spectral changes, suggesting that surface refreshing did not occur on a measurable scale. Similar studies of other targets at smaller encounter distances are required to determine if the lack of spectral changes on 2024 MK indicates it was not close enough to Earth to affect its surface or if the spectral similarity pre and postapproach instead indicates planetary encounters do not cause surface refreshing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信