Forecasting Copper Price with Multi-view Graph Transformer and Fractional Brownian Motion-Based Data Augmentation

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Qiguo Sun, Xibei Yang, Meiyu Zhong
{"title":"Forecasting Copper Price with Multi-view Graph Transformer and Fractional Brownian Motion-Based Data Augmentation","authors":"Qiguo Sun, Xibei Yang, Meiyu Zhong","doi":"10.1007/s11053-024-10442-1","DOIUrl":null,"url":null,"abstract":"<p>Copper price forecasting is crucial for both investors and governments due to its significant economic impact. Recently, machine learning techniques have been widely employed to construct copper price forecasting models, demonstrating high forecasting accuracy. However, there are two main limitations in these models: (1) the lack of ability to capture the non-Euclidean relationships among numerous features; and (2) using purely data-driven algorithms, which lack tractability and physical effectiveness. To address these challenges, this study proposes a multi-view graph transformer (MVGT) model for 1-month ahead copper price forecasting. MVGT integrates a parametric fractional Brownian motion module, which provides conditional expectations of future copper prices for data augmentation. Moreover, to comprehensively capture the non-Euclidean structure of copper features, MVGT introduces five graph generation methods. Furthermore, a multi-view graph transformers model is designed to provide structural copper feature embeddings, and an attention-based multi-view fusion mechanism is developed to enable the MVGT to comprehensively understand market trends while focusing on the most influential views. Experimental results on the COMEX and LME datasets demonstrate that MVGT outperforms baseline models in terms of training efficiency, forecasting accuracy, and generalization.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10442-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper price forecasting is crucial for both investors and governments due to its significant economic impact. Recently, machine learning techniques have been widely employed to construct copper price forecasting models, demonstrating high forecasting accuracy. However, there are two main limitations in these models: (1) the lack of ability to capture the non-Euclidean relationships among numerous features; and (2) using purely data-driven algorithms, which lack tractability and physical effectiveness. To address these challenges, this study proposes a multi-view graph transformer (MVGT) model for 1-month ahead copper price forecasting. MVGT integrates a parametric fractional Brownian motion module, which provides conditional expectations of future copper prices for data augmentation. Moreover, to comprehensively capture the non-Euclidean structure of copper features, MVGT introduces five graph generation methods. Furthermore, a multi-view graph transformers model is designed to provide structural copper feature embeddings, and an attention-based multi-view fusion mechanism is developed to enable the MVGT to comprehensively understand market trends while focusing on the most influential views. Experimental results on the COMEX and LME datasets demonstrate that MVGT outperforms baseline models in terms of training efficiency, forecasting accuracy, and generalization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信