Efficient iterative methods for hyperparameter estimation in large-scale linear inverse problems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Khalil A. Hall-Hooper, Arvind K. Saibaba, Julianne Chung, Scot M. Miller
{"title":"Efficient iterative methods for hyperparameter estimation in large-scale linear inverse problems","authors":"Khalil A. Hall-Hooper,&nbsp;Arvind K. Saibaba,&nbsp;Julianne Chung,&nbsp;Scot M. Miller","doi":"10.1007/s10444-024-10208-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems but are not computationally feasible for problems with a very large number of unknown inverse parameters. In this work, we describe an empirical Bayes (EB) method to estimate hyperparameters that maximize the marginal posterior, i.e., the probability density of the hyperparameters conditioned on the data, and then we use the estimated hyperparameters to compute the posterior of the unknown inverse parameters. For problems where the computation of the square root and inverse of prior covariance matrices are not feasible, we describe an approach based on the generalized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek hyperparameters that minimize the approximate marginal posterior. Numerical results from seismic and atmospheric tomography demonstrate the accuracy, robustness, and potential benefits of the proposed approach.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10208-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems but are not computationally feasible for problems with a very large number of unknown inverse parameters. In this work, we describe an empirical Bayes (EB) method to estimate hyperparameters that maximize the marginal posterior, i.e., the probability density of the hyperparameters conditioned on the data, and then we use the estimated hyperparameters to compute the posterior of the unknown inverse parameters. For problems where the computation of the square root and inverse of prior covariance matrices are not feasible, we describe an approach based on the generalized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek hyperparameters that minimize the approximate marginal posterior. Numerical results from seismic and atmospheric tomography demonstrate the accuracy, robustness, and potential benefits of the proposed approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信