Correlating Photochemical H2 Production and Excited State Lifetimes of Heterostructured and Doped ZnCdS Nanoparticles

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-12-09 DOI:10.1039/d4nr04427d
Matthew Fortunato, Joseph Matthew O'Shea, Jie Huang, Hashini Chandrasiri, Eun Byoel Kim, Abdelqader Jamhawi, A. Jean-Luc Ayitou, Preston Snee, Claudia Turro
{"title":"Correlating Photochemical H2 Production and Excited State Lifetimes of Heterostructured and Doped ZnCdS Nanoparticles","authors":"Matthew Fortunato, Joseph Matthew O'Shea, Jie Huang, Hashini Chandrasiri, Eun Byoel Kim, Abdelqader Jamhawi, A. Jean-Luc Ayitou, Preston Snee, Claudia Turro","doi":"10.1039/d4nr04427d","DOIUrl":null,"url":null,"abstract":"A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H2 fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts. The results, augmented with DFT and tight binding electronic structure calculations, revealed the importance of exciton charge carrier separation via tunneling. While the systems studied here were photocatalytically active, they nonetheless lagged behind the quantum efficiency observed from “gold standard” CdSe/CdS∙Pt dot-in-rod nanoparticles as evident from quantum efficiencies that were estimated to be 0.5→2%.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04427d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H2 fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts. The results, augmented with DFT and tight binding electronic structure calculations, revealed the importance of exciton charge carrier separation via tunneling. While the systems studied here were photocatalytically active, they nonetheless lagged behind the quantum efficiency observed from “gold standard” CdSe/CdS∙Pt dot-in-rod nanoparticles as evident from quantum efficiencies that were estimated to be 0.5→2%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信