Tuning Optical Properties of Gold Nanoparticles via Photoactive Liquid Crystalline Azo Ligands

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-12-09 DOI:10.1039/d4nr03771e
Sachin Bhat, Shankar D. Rao, S. Krishna Prasad, Channabasaveshwar Yelamaggad
{"title":"Tuning Optical Properties of Gold Nanoparticles via Photoactive Liquid Crystalline Azo Ligands","authors":"Sachin Bhat, Shankar D. Rao, S. Krishna Prasad, Channabasaveshwar Yelamaggad","doi":"10.1039/d4nr03771e","DOIUrl":null,"url":null,"abstract":"In the field of modern nanoscience, the ability to tailor the properties of nanoparticles is essential for advancing their applications. A key approach to achieving this control involves manipulating surface plasmon resonance (SPR) to modify optical properties. This study introduces a novel method for synthesizing gold nanoparticles capped with photoactive liquid crystalline azo ligands, accomplished without reducing agents. Comprehensive structural characterization was performed using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction (PXRD), and high-resolution transmission electron microscopy (HRTEM). Photophysical investigations, including time-dependent UV-Vis and fluorescence spectroscopy, provided insights into the modulation of SPR. The mesomorphic behavior of the azo ligands was examined through polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD), revealing a chiral lamellar superstructure confirmed by circular dichroism (CD) spectroscopy. Notably, the photoactive azo ligands demonstrated significant control over SPR peak modulation, enabling precise manipulation of nanoparticle size and arrangement. This research highlights the potential of photoactive ligands in the design of nanoparticles with tailored optical properties, paving the way for innovative applications in various fields.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"37 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03771e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of modern nanoscience, the ability to tailor the properties of nanoparticles is essential for advancing their applications. A key approach to achieving this control involves manipulating surface plasmon resonance (SPR) to modify optical properties. This study introduces a novel method for synthesizing gold nanoparticles capped with photoactive liquid crystalline azo ligands, accomplished without reducing agents. Comprehensive structural characterization was performed using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction (PXRD), and high-resolution transmission electron microscopy (HRTEM). Photophysical investigations, including time-dependent UV-Vis and fluorescence spectroscopy, provided insights into the modulation of SPR. The mesomorphic behavior of the azo ligands was examined through polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD), revealing a chiral lamellar superstructure confirmed by circular dichroism (CD) spectroscopy. Notably, the photoactive azo ligands demonstrated significant control over SPR peak modulation, enabling precise manipulation of nanoparticle size and arrangement. This research highlights the potential of photoactive ligands in the design of nanoparticles with tailored optical properties, paving the way for innovative applications in various fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信