Jinjing Huang, Kaixing Fu, Zhuoya Fang, Jinming Luo
{"title":"Enhanced Selective Removal of PFAS at Trace Level Using Quaternized Cellulose-Functionalized Polymer Resin: Performance and Mechanism","authors":"Jinjing Huang, Kaixing Fu, Zhuoya Fang, Jinming Luo","doi":"10.1016/j.watres.2024.122937","DOIUrl":null,"url":null,"abstract":"The effective protocol for treating per- and polyfluoroalkyl substances (PFAS) in water at environmentally relevant concentrations (∼ ng L<sup>−1</sup>) has received unprecedented attention due to the stringent drinking water standards. In order to ensure safe water treatment, sorption using quaternary ammonium functionalized strong-base anion exchange resins (SB-AERs) is considered a viable option for treating PFAS when compared to commercialized activated carbon, as SB-AERs can be <em>in situ</em> regenerated with long-term operation capabilities. However, the harsh conditions required for traditional direct synthesis of SB-AERs (such as prolonged reaction times, complex processes, and environmental pollution caused by the organic reagents used) limit their applications. In this study, we present a novel indirect synthesis method that can effectively pre-functionalizes cellulose for quaternization. This modified cellulose is subsequently loaded onto chloromethylated polystyrene to produce a quaternized cellulose-functionalized polymer resin (QC-CMPS). The process is straightforward to implement, reduces the use of toxic chemicals, and effectively mitigates water safety risks associated with hazardous reagent leaks. As results, the prepared QC-CMPS demonstrates exceptional selective capability for PFAS removal in real environmental water matrices, achieving over 99% removal efficiency at an initial concentration of 1000 ng L<sup>−1</sup>. Additionally, QC-CMPS demonstrates low sensitivity to pH and background ions, effectively removing PFAS from both tap water and lake water with efficiency rates exceeding 95%. The exhausted QC-CMPS can be readily rejuvenated by rinsing with 1% NaCl and MeOH (V/V=3/7) mixture, as demonstrated by five successful consecutive cycles. The fixed-bed column test confirmed that ∼ 11,000 bed volumes (∼ 292.70 L) of the feed streams (∼250 ng L<sup>−1</sup>) can be effectively treated with the enrichment factor of 26.42, 25.16, 27.77 and 21.17 for PFOA, PFOS, PFBS, and GenX, respectively, highlighting significant potential for practical applications.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"18 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122937","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effective protocol for treating per- and polyfluoroalkyl substances (PFAS) in water at environmentally relevant concentrations (∼ ng L−1) has received unprecedented attention due to the stringent drinking water standards. In order to ensure safe water treatment, sorption using quaternary ammonium functionalized strong-base anion exchange resins (SB-AERs) is considered a viable option for treating PFAS when compared to commercialized activated carbon, as SB-AERs can be in situ regenerated with long-term operation capabilities. However, the harsh conditions required for traditional direct synthesis of SB-AERs (such as prolonged reaction times, complex processes, and environmental pollution caused by the organic reagents used) limit their applications. In this study, we present a novel indirect synthesis method that can effectively pre-functionalizes cellulose for quaternization. This modified cellulose is subsequently loaded onto chloromethylated polystyrene to produce a quaternized cellulose-functionalized polymer resin (QC-CMPS). The process is straightforward to implement, reduces the use of toxic chemicals, and effectively mitigates water safety risks associated with hazardous reagent leaks. As results, the prepared QC-CMPS demonstrates exceptional selective capability for PFAS removal in real environmental water matrices, achieving over 99% removal efficiency at an initial concentration of 1000 ng L−1. Additionally, QC-CMPS demonstrates low sensitivity to pH and background ions, effectively removing PFAS from both tap water and lake water with efficiency rates exceeding 95%. The exhausted QC-CMPS can be readily rejuvenated by rinsing with 1% NaCl and MeOH (V/V=3/7) mixture, as demonstrated by five successful consecutive cycles. The fixed-bed column test confirmed that ∼ 11,000 bed volumes (∼ 292.70 L) of the feed streams (∼250 ng L−1) can be effectively treated with the enrichment factor of 26.42, 25.16, 27.77 and 21.17 for PFOA, PFOS, PFBS, and GenX, respectively, highlighting significant potential for practical applications.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.