Achen Zhao, Qiuyi Li, Pengfei Meng, Ping Liu, Siqun Wu, Zhaobo Lang, Yi Song, Alberto P. Macho
{"title":"Reduced content of gamma-aminobutyric acid enhances resistance to bacterial wilt disease in tomato","authors":"Achen Zhao, Qiuyi Li, Pengfei Meng, Ping Liu, Siqun Wu, Zhaobo Lang, Yi Song, Alberto P. Macho","doi":"10.1111/pbi.14539","DOIUrl":null,"url":null,"abstract":"Bacteria within the <i>Ralstonia solanacearum</i> species complex cause devastating diseases in numerous crops, causing important losses in food production and industrial supply. Despite extensive efforts to enhance plant tolerance to disease caused by <i>Ralstonia</i>, efficient and sustainable approaches are still missing. Before, we found that <i>Ralstonia</i> promotes the production of gamma-aminobutyric acid (GABA) in plant cells; GABA can be used as a nutrient by <i>Ralstonia</i> to sustain the massive bacterial replication during plant colonization. In this work, we used CRISPR-Cas9-mediated genome editing to mutate <i>SlGAD2</i>, which encodes the major glutamate decarboxylase responsible for GABA production in tomato, a major crop affected by <i>Ralstonia</i>. The resulting <i>Slgad2</i> mutant plants show reduced GABA content, and enhanced tolerance to bacterial wilt disease upon <i>Ralstonia</i> inoculation. <i>Slgad2</i> mutant plants did not show altered susceptibility to other tested biotic and abiotic stresses, including drought and heat. Interestingly, <i>Slgad2</i> mutant plants showed altered microbiome composition in roots and soil. We reveal a strategy to enhance plant resistance to <i>Ralstonia</i> by the manipulation of plant metabolism leading to an impairment of bacterial fitness. This approach could be particularly efficient in combination with other strategies based on the manipulation of the plant immune system, paving the way to a sustainable solution to <i>Ralstonia</i> in agricultural systems.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"93 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14539","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria within the Ralstonia solanacearum species complex cause devastating diseases in numerous crops, causing important losses in food production and industrial supply. Despite extensive efforts to enhance plant tolerance to disease caused by Ralstonia, efficient and sustainable approaches are still missing. Before, we found that Ralstonia promotes the production of gamma-aminobutyric acid (GABA) in plant cells; GABA can be used as a nutrient by Ralstonia to sustain the massive bacterial replication during plant colonization. In this work, we used CRISPR-Cas9-mediated genome editing to mutate SlGAD2, which encodes the major glutamate decarboxylase responsible for GABA production in tomato, a major crop affected by Ralstonia. The resulting Slgad2 mutant plants show reduced GABA content, and enhanced tolerance to bacterial wilt disease upon Ralstonia inoculation. Slgad2 mutant plants did not show altered susceptibility to other tested biotic and abiotic stresses, including drought and heat. Interestingly, Slgad2 mutant plants showed altered microbiome composition in roots and soil. We reveal a strategy to enhance plant resistance to Ralstonia by the manipulation of plant metabolism leading to an impairment of bacterial fitness. This approach could be particularly efficient in combination with other strategies based on the manipulation of the plant immune system, paving the way to a sustainable solution to Ralstonia in agricultural systems.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.