Bruno Sicardy, Felipe Braga-Ribas, Marc W. Buie, José Luis Ortiz, Françoise Roques
{"title":"Stellar occultations by trans-Neptunian objects","authors":"Bruno Sicardy, Felipe Braga-Ribas, Marc W. Buie, José Luis Ortiz, Françoise Roques","doi":"10.1007/s00159-024-00156-x","DOIUrl":null,"url":null,"abstract":"<div><p>Stellar occultations provide a powerful tool to explore objects of the outer solar system. The Gaia mission now provides milli-arcsec accuracy on the predictions of these events and makes possible observations that were previously unthinkable. Occultations return kilometric accuracies on the three-dimensional shape of bodies irrespective of their geocentric distances, with the potential of detecting topographic features along the limb. From the shape, accurate values of albedo can be derived, and if the mass is known, the bulk density is pinned down, thus constraining the internal structure and equilibrium state of the object. Occultations are also extremely sensitive to tenuous atmospheres, down to the nanobar level. They allowed the monitoring of Pluto’s and Triton’s atmospheres in the last three decades, constraining their seasonal evolution. They may unveil in the near future atmospheres around other remote bodies of the solar system. Since 2013, occultations have led to the surprising discovery of ring systems around the Centaur object Chariklo, the dwarf planet Haumea and the large trans-Neptunian object Quaoar, while revealing dense material around the Centaur Chiron. This suggests that rings are probably much more common features than previously thought. Meanwhile, they have raised new dynamical questions concerning the confining effect of resonances forced by irregular objects on ring particles. Serendipitous occultations by km-sized trans-Neptunian or Oort objects have the potential to provide the size distribution of a population that suffered few collisions until now, thus constraining the history of primordial planetesimals in the 1–100 km range.</p></div>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"32 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-024-00156-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stellar occultations provide a powerful tool to explore objects of the outer solar system. The Gaia mission now provides milli-arcsec accuracy on the predictions of these events and makes possible observations that were previously unthinkable. Occultations return kilometric accuracies on the three-dimensional shape of bodies irrespective of their geocentric distances, with the potential of detecting topographic features along the limb. From the shape, accurate values of albedo can be derived, and if the mass is known, the bulk density is pinned down, thus constraining the internal structure and equilibrium state of the object. Occultations are also extremely sensitive to tenuous atmospheres, down to the nanobar level. They allowed the monitoring of Pluto’s and Triton’s atmospheres in the last three decades, constraining their seasonal evolution. They may unveil in the near future atmospheres around other remote bodies of the solar system. Since 2013, occultations have led to the surprising discovery of ring systems around the Centaur object Chariklo, the dwarf planet Haumea and the large trans-Neptunian object Quaoar, while revealing dense material around the Centaur Chiron. This suggests that rings are probably much more common features than previously thought. Meanwhile, they have raised new dynamical questions concerning the confining effect of resonances forced by irregular objects on ring particles. Serendipitous occultations by km-sized trans-Neptunian or Oort objects have the potential to provide the size distribution of a population that suffered few collisions until now, thus constraining the history of primordial planetesimals in the 1–100 km range.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.