In-plane compressive strain stabilized formamidinium-based perovskite

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-02-05 DOI:10.1016/j.matt.2024.11.014
Xuechun Sun , Pengju Shi , Jiahui Shen , Jichuang Shen , Liuwen Tian , Jiazhe Xu , Qingqing Liu , Yuan Tian , Donger Jin , Xiaohe Miao , Jingjing Xue , Rui Wang
{"title":"In-plane compressive strain stabilized formamidinium-based perovskite","authors":"Xuechun Sun ,&nbsp;Pengju Shi ,&nbsp;Jiahui Shen ,&nbsp;Jichuang Shen ,&nbsp;Liuwen Tian ,&nbsp;Jiazhe Xu ,&nbsp;Qingqing Liu ,&nbsp;Yuan Tian ,&nbsp;Donger Jin ,&nbsp;Xiaohe Miao ,&nbsp;Jingjing Xue ,&nbsp;Rui Wang","doi":"10.1016/j.matt.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 2","pages":"Article 101920"},"PeriodicalIF":17.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524005897","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.

Abstract Image

Abstract Image

面内压缩应变稳定的甲脒基钙钛矿
压缩应变通常被认为是稳定甲脒基钙钛矿的关键因素。然而,由于材料内部存在不均匀应变,导致钙钛矿沿哪个方向稳定的压缩仍不清楚。本文介绍了一种金属封装方法,在钙钛矿薄膜的面内或面外方向施加压缩应变。掠射广角x射线散射(GIWAXS)结果表明,面内压缩增强了钙钛矿的稳定性,而面外压缩则不利于钙钛矿的稳定性。具体来说,面外压缩会导致非活性δ相的形成,从而影响钙钛矿的稳定性。最后,我们开发了一种将平面内压缩集成到钙钛矿太阳能电池(PSC)器件中的通用工艺,从而提高了它们的稳定性。本研究阐明了压缩应变影响钙钛矿稳定性的机理,为优化钙钛矿性能的应变工程提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
文献相关原料
公司名称
产品信息
阿拉丁
benzamidine hydrochloride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信