In-plane compressive strain stabilized formamidinium-based perovskite

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-12-09 DOI:10.1016/j.matt.2024.11.014
Xuechun Sun, Pengju Shi, Jiahui Shen, Jichuang Shen, Liuwen Tian, Jiazhe Xu, Qingqing Liu, Yuan Tian, Donger Jin, Xiaohe Miao, Jingjing Xue, Rui Wang
{"title":"In-plane compressive strain stabilized formamidinium-based perovskite","authors":"Xuechun Sun, Pengju Shi, Jiahui Shen, Jichuang Shen, Liuwen Tian, Jiazhe Xu, Qingqing Liu, Yuan Tian, Donger Jin, Xiaohe Miao, Jingjing Xue, Rui Wang","doi":"10.1016/j.matt.2024.11.014","DOIUrl":null,"url":null,"abstract":"Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.","PeriodicalId":388,"journal":{"name":"Matter","volume":"212 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.11.014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信