{"title":"Bed-immersion-ratio variation as an efficient strategy to regulate denitrification efficiency directionally in elemental sulfur packed-bed reactors","authors":"Guijiao Zhang, Hao-Ran Xu, Wenwei Liao, Jia-Min Xu, Na Zhang, Daheng Ren, Xinjie Chen, Wenyan Mao, Xiangli Zeng, Aijie Wang, Hao-Yi Cheng","doi":"10.1016/j.watres.2024.122941","DOIUrl":null,"url":null,"abstract":"Autotrophic denitrification in sulfur packed-bed reactors (S<sup>0</sup>PBR) has been widely employed for treating municipal secondary effluent. However, the fixed volume of packed sulfur in S<sup>0</sup>PBR restricts the ability to adjust denitrification efficiency in response to fluctuating influent nitrate levels, leading to either effluent standard exceedances or unnecessary sulfur consumption. Here, we proposed a novel method for directionally regulating nitrate removal efficiency (NRE) in S<sup>0</sup>PBR by adjusting the bed-immersion-ratio (BIR). The results demonstrated that the NRE could be effectively controlled through adjustments of BIR, with the maximum NRE achieved when BIR was increased to 1.00. Notably, a non-zero minimum NRE was observed when BIR decreased to 0.00. This could be associated with actual hydraulic retention time (aHRT), with a strong correlation observed between aHRT and BIR. Based on these findings, a kinetic model was developed that integrated both exposure and immersion parts, expressed as <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\">j</mi></msub><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mrow is=\"true\"><msubsup is=\"true\"><mi is=\"true\">C</mi><mrow is=\"true\"><mi is=\"true\">i</mi><mi is=\"true\">n</mi><mo is=\"true\">&#x2212;</mo><mn is=\"true\">0</mn></mrow><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mn is=\"true\">2</mn></mrow></msubsup><mo is=\"true\">&#x2212;</mo><msubsup is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">e</mi><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mn is=\"true\">2</mn></mrow></msubsup></mrow><mo is=\"true\">)</mo><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mn is=\"true\">2.54</mn><mi is=\"true\">A</mi><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">t</mi></msub></mrow></mfrac><mo linebreak=\"goodbreak\" is=\"true\">&#x2212;</mo><mn is=\"true\">0.65</mn></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"5.432ex\" role=\"img\" style=\"vertical-align: -1.389ex;\" viewbox=\"0 -1740.8 10861.3 2338.9\" width=\"25.226ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(759,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6A\"></use></g></g><g is=\"true\" transform=\"translate(1428,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(2207,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"5133\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,863)\"><use is=\"true\" transform=\"scale(0.707)\" xlink:href=\"#MJSZ2-28\"></use><g is=\"true\" transform=\"translate(422,0)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(547,369)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(250,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(505,-218)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-69\"></use></g><g is=\"true\" transform=\"translate(172,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-6E\"></use></g><g is=\"true\" transform=\"translate(473,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(862,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-30\"></use></g></g></g><g is=\"true\" transform=\"translate(1689,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(2239,0)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(547,306)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(250,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(505,-175)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-65\"></use></g></g></g><use is=\"true\" transform=\"scale(0.707)\" x=\"5700\" xlink:href=\"#MJSZ2-29\" y=\"-1\"></use><g is=\"true\" transform=\"translate(4453,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(1252,-411)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1258,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g><g is=\"true\" transform=\"translate(1789,0)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-48\"></use></g><g is=\"true\" transform=\"translate(587,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-74\"></use></g></g></g></g></g><g is=\"true\" transform=\"translate(8080,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(9081,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-36\" y=\"0\"></use><use x=\"1279\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\">j</mi></msub><mo is=\"true\" linebreak=\"goodbreak\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mrow is=\"true\"><msubsup is=\"true\"><mi is=\"true\">C</mi><mrow is=\"true\"><mi is=\"true\">i</mi><mi is=\"true\">n</mi><mo is=\"true\">−</mo><mn is=\"true\">0</mn></mrow><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mn is=\"true\">2</mn></mrow></msubsup><mo is=\"true\">−</mo><msubsup is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">e</mi><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mn is=\"true\">2</mn></mrow></msubsup></mrow><mo is=\"true\">)</mo><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mn is=\"true\">2.54</mn><mi is=\"true\">A</mi><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">t</mi></msub></mrow></mfrac><mo is=\"true\" linebreak=\"goodbreak\">−</mo><mn is=\"true\">0.65</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\">j</mi></msub><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mrow is=\"true\"><msubsup is=\"true\"><mi is=\"true\">C</mi><mrow is=\"true\"><mi is=\"true\">i</mi><mi is=\"true\">n</mi><mo is=\"true\">−</mo><mn is=\"true\">0</mn></mrow><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mn is=\"true\">2</mn></mrow></msubsup><mo is=\"true\">−</mo><msubsup is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">e</mi><mrow is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mn is=\"true\">2</mn></mrow></msubsup></mrow><mo is=\"true\">)</mo><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mn is=\"true\">2.54</mn><mi is=\"true\">A</mi><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">t</mi></msub></mrow></mfrac><mo linebreak=\"goodbreak\" is=\"true\">−</mo><mn is=\"true\">0.65</mn></mrow></math></script></span>. This model proved effective for describing the nitrate reduction kinetics in the S<sup>0</sup>PBR under BIR variation. The effluent concentration achieved a more stable designed nitrate level under BIR variation guided by our developed model, compared to the effluent nitrate concentration under full immersion. Besides, sulfur consumption could be reduced by 7.8 % to 31.6 % under BIR variation due to the reduced nitrate removal. Overall, this study proposed a novel approach for achieving stable nitrate effluent guided by our developed model under fluctuating influent nitrate loadings, which was both efficient and economical.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"1 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122941","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autotrophic denitrification in sulfur packed-bed reactors (S0PBR) has been widely employed for treating municipal secondary effluent. However, the fixed volume of packed sulfur in S0PBR restricts the ability to adjust denitrification efficiency in response to fluctuating influent nitrate levels, leading to either effluent standard exceedances or unnecessary sulfur consumption. Here, we proposed a novel method for directionally regulating nitrate removal efficiency (NRE) in S0PBR by adjusting the bed-immersion-ratio (BIR). The results demonstrated that the NRE could be effectively controlled through adjustments of BIR, with the maximum NRE achieved when BIR was increased to 1.00. Notably, a non-zero minimum NRE was observed when BIR decreased to 0.00. This could be associated with actual hydraulic retention time (aHRT), with a strong correlation observed between aHRT and BIR. Based on these findings, a kinetic model was developed that integrated both exposure and immersion parts, expressed as . This model proved effective for describing the nitrate reduction kinetics in the S0PBR under BIR variation. The effluent concentration achieved a more stable designed nitrate level under BIR variation guided by our developed model, compared to the effluent nitrate concentration under full immersion. Besides, sulfur consumption could be reduced by 7.8 % to 31.6 % under BIR variation due to the reduced nitrate removal. Overall, this study proposed a novel approach for achieving stable nitrate effluent guided by our developed model under fluctuating influent nitrate loadings, which was both efficient and economical.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.