Amplified Detection of Threading Dislocations in n-Type 4H-SiC Epilayers Enabled by Time-Resolved Photoluminescence Mapping

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Zhaoxia Yang, Fengke Sun, Jing Leng, Wenming Tian, Shengye Jin
{"title":"Amplified Detection of Threading Dislocations in n-Type 4H-SiC Epilayers Enabled by Time-Resolved Photoluminescence Mapping","authors":"Zhaoxia Yang, Fengke Sun, Jing Leng, Wenming Tian, Shengye Jin","doi":"10.1021/acs.jpclett.4c03297","DOIUrl":null,"url":null,"abstract":"Threading dislocations (TDs) in epitaxial layers of silicon carbide (SiC) exert a negative impact on the device performance, thereby hampering the commercialization of SiC power devices. Therefore, inspection of TD defects is a crucial step in the fabrication of SiC wafers. In this work, we reported a time-resolved photoluminescence (PL) mapping technique for detecting TDs by extracting PL images at different delay times after pulse excitation along the lifetime decay curve. The results indicate a 2-fold enlargement of the TD PL quenching spot at a later delay time compared to the full delay time, enhancing the precision of TD defect imaging in 4H-SiC epitaxial layers. We postulate that our time-resolved PL mapping technique holds promise for the industrial evaluation of TD defects in SiC epitaxial layers.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"140 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03297","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Threading dislocations (TDs) in epitaxial layers of silicon carbide (SiC) exert a negative impact on the device performance, thereby hampering the commercialization of SiC power devices. Therefore, inspection of TD defects is a crucial step in the fabrication of SiC wafers. In this work, we reported a time-resolved photoluminescence (PL) mapping technique for detecting TDs by extracting PL images at different delay times after pulse excitation along the lifetime decay curve. The results indicate a 2-fold enlargement of the TD PL quenching spot at a later delay time compared to the full delay time, enhancing the precision of TD defect imaging in 4H-SiC epitaxial layers. We postulate that our time-resolved PL mapping technique holds promise for the industrial evaluation of TD defects in SiC epitaxial layers.

Abstract Image

基于时间分辨光致发光映射的n型4H-SiC涂层中螺纹位错的放大检测
碳化硅(SiC)外延层中的螺纹位错(TDs)对器件性能产生负面影响,从而阻碍了SiC功率器件的商业化。因此,在SiC晶圆的制造过程中,TD缺陷的检测是至关重要的一步。在这项工作中,我们报道了一种时间分辨光致发光(PL)映射技术,该技术通过在脉冲激发后沿寿命衰减曲线提取不同延迟时间的PL图像来检测td。结果表明,与完全延迟相比,延迟后的TD PL淬火点扩大了2倍,提高了在4H-SiC外延层中TD缺陷成像的精度。我们假设我们的时间分辨PL映射技术有望用于SiC外延层中TD缺陷的工业评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信