Revealing the Dynamic Aspects of Photoinduced Halide Segregation in Mixed-Halide Cs0.15FA0.85PbI2Br Perovskite Films Using a Hyperspectral Imaging Technique

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yusuke Daikoku, Takumi Yamada, Ai Shimazaki, Tomoya Nakamura, Atsushi Wakamiya, Yoshihiko Kanemitsu
{"title":"Revealing the Dynamic Aspects of Photoinduced Halide Segregation in Mixed-Halide Cs0.15FA0.85PbI2Br Perovskite Films Using a Hyperspectral Imaging Technique","authors":"Yusuke Daikoku, Takumi Yamada, Ai Shimazaki, Tomoya Nakamura, Atsushi Wakamiya, Yoshihiko Kanemitsu","doi":"10.1021/acs.jpclett.4c03077","DOIUrl":null,"url":null,"abstract":"The band gap energy of halide perovskite semiconductors is manipulated by controlling the halide composition, and mixed halide perovskites are receiving much attention as top cell materials for tandem solar cells. To understand dynamic aspects of photoinduced halide segregation in mixed-halide perovskite films, we use a hyperspectral imaging technique. We reveal the space- and time-resolved photoluminescence (PL) spectra of Cs<sub>0.15</sub>FA<sub>0.85</sub>PbI<sub>2</sub>Br perovskite films during prolonged light illumination. Under applied electric fields, we observe photoinduced phase segregation at the excitation laser spot, with a line-shape I-rich region of low PL efficiency appearing near the anode electrode. This I-rich region moves from the anode to the cathode electrodes and stops at the laser excitation spot. We discuss the significant enhancement of halide ion migration under light illumination and the dynamical changes of photoinduced halide segregation.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"121 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The band gap energy of halide perovskite semiconductors is manipulated by controlling the halide composition, and mixed halide perovskites are receiving much attention as top cell materials for tandem solar cells. To understand dynamic aspects of photoinduced halide segregation in mixed-halide perovskite films, we use a hyperspectral imaging technique. We reveal the space- and time-resolved photoluminescence (PL) spectra of Cs0.15FA0.85PbI2Br perovskite films during prolonged light illumination. Under applied electric fields, we observe photoinduced phase segregation at the excitation laser spot, with a line-shape I-rich region of low PL efficiency appearing near the anode electrode. This I-rich region moves from the anode to the cathode electrodes and stops at the laser excitation spot. We discuss the significant enhancement of halide ion migration under light illumination and the dynamical changes of photoinduced halide segregation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信