{"title":"Advanced High‒Entropy Materials for High‒Quality Energy Storage and Conversion","authors":"Zengyuan Fan, Jiawei Wang, Yunpeng Wu, Peng Zhang","doi":"10.1016/j.ensm.2024.103954","DOIUrl":null,"url":null,"abstract":"Due to global shifts in energy consumption and increasing demand for efficient, safe, and cost‒effective energy storage solutions, high‒entropy materials (HEMs) have garnered great attention. The HEMs, composed of five or more elements in near‒equimolar ratios, exhibit unique properties such as high entropy effects, lattice distortion, sluggish diffusion kinetics, and the \"cocktail\" effect. These characteristics of HEMs significantly enhance the performance of rechargeable batteries and supercapacitors by improving electronic conductivity and ionic transport of the relevant battery composition as well as expanding the operational battery temperature. This paper timely summarizes the function principles of the four primary enhancement mechanisms of HEMs and resultant recent applications in energy storage and conversion technologies, including cathodes, anodes, and electrolytes. Considerable emphasis is focused on the functional orientation screen and the synthesis of HEM elements/structures towards stability and power capability of the electrode reactions. Finally, the current challenge, the possible solving strategies and the future research trend for HEMs are outlined. It is believed that this review will offer timely and comprehensive information on the future research directions of HEMs to boost high‒performance energy storage communities.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"27 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103954","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to global shifts in energy consumption and increasing demand for efficient, safe, and cost‒effective energy storage solutions, high‒entropy materials (HEMs) have garnered great attention. The HEMs, composed of five or more elements in near‒equimolar ratios, exhibit unique properties such as high entropy effects, lattice distortion, sluggish diffusion kinetics, and the "cocktail" effect. These characteristics of HEMs significantly enhance the performance of rechargeable batteries and supercapacitors by improving electronic conductivity and ionic transport of the relevant battery composition as well as expanding the operational battery temperature. This paper timely summarizes the function principles of the four primary enhancement mechanisms of HEMs and resultant recent applications in energy storage and conversion technologies, including cathodes, anodes, and electrolytes. Considerable emphasis is focused on the functional orientation screen and the synthesis of HEM elements/structures towards stability and power capability of the electrode reactions. Finally, the current challenge, the possible solving strategies and the future research trend for HEMs are outlined. It is believed that this review will offer timely and comprehensive information on the future research directions of HEMs to boost high‒performance energy storage communities.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.