Youngil Roh, Hyeokjin Kwon, Jaewon Baek, Changhoon Park, Seongyeong Kim, Kahee Hwang, A Reum Ha, Seongmin Ha, Jongchan Song, Hee-Tak Kim
{"title":"Solvation Structure Engineering via Inorganic–Organic Composite Layer for Corrosion-Resistant Lithium Metal Anodes in High-Concentration Electrolyte","authors":"Youngil Roh, Hyeokjin Kwon, Jaewon Baek, Changhoon Park, Seongyeong Kim, Kahee Hwang, A Reum Ha, Seongmin Ha, Jongchan Song, Hee-Tak Kim","doi":"10.1002/aenm.202403944","DOIUrl":null,"url":null,"abstract":"High-concentration electrolytes have been reported to form an anion-derived, inorganic-rich solid electrolyte interphase on lithium metal electrodes; however, these electrodes suffer from high Li corrosion by the coordinated anions and consequent anion depletion. Herein, the study reports a composite layer comprising single-ion conducting ceramic (SICC) nanoparticles and a gel polymer electrolyte (GPE), which can suppress the Li corrosion in a high-concentration electrolyte based on lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (<i>N</i>,<i>N</i>-dimethylsulfamoyl fluoride, FSA). The lithium-ion space charges formed at the SICC/GPE interface reduce the coordination of anions in the composite layer, suppressing their decomposition. A Li | LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) pouch bi-cell with a composite layer-coated thin lithium metal anode (N/P = 1, thickness: 20 µm) delivers projected gravimetric (316 Wh kg<sup>−1</sup>) and projected volumetric (1433 Wh L<sup>−1</sup>) energy densities and exhibits stable operation for 350 cycles, with 70% capacity retention at 1/3 C charge–discharge rate. The engineering of the solvation structure through the inorganic–organic composite layer represents a practical strategy for developing corrosion-resistant lithium metal anodes in high-concentration electrolytes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"18 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-concentration electrolytes have been reported to form an anion-derived, inorganic-rich solid electrolyte interphase on lithium metal electrodes; however, these electrodes suffer from high Li corrosion by the coordinated anions and consequent anion depletion. Herein, the study reports a composite layer comprising single-ion conducting ceramic (SICC) nanoparticles and a gel polymer electrolyte (GPE), which can suppress the Li corrosion in a high-concentration electrolyte based on lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (N,N-dimethylsulfamoyl fluoride, FSA). The lithium-ion space charges formed at the SICC/GPE interface reduce the coordination of anions in the composite layer, suppressing their decomposition. A Li | LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch bi-cell with a composite layer-coated thin lithium metal anode (N/P = 1, thickness: 20 µm) delivers projected gravimetric (316 Wh kg−1) and projected volumetric (1433 Wh L−1) energy densities and exhibits stable operation for 350 cycles, with 70% capacity retention at 1/3 C charge–discharge rate. The engineering of the solvation structure through the inorganic–organic composite layer represents a practical strategy for developing corrosion-resistant lithium metal anodes in high-concentration electrolytes.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.