Synthetic random environmental time series generation with similarity control, preserving original signal’s statistical characteristics

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ofek Aloni , Gal Perelman , Barak Fishbain
{"title":"Synthetic random environmental time series generation with similarity control, preserving original signal’s statistical characteristics","authors":"Ofek Aloni ,&nbsp;Gal Perelman ,&nbsp;Barak Fishbain","doi":"10.1016/j.envsoft.2024.106283","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic datasets are widely used in applications like missing data imputation, simulations, training data-driven models, and system robustness analysis. Typically based on historical data, these datasets need to represent specific system behaviors while being diverse enough to challenge the system with a broad range of inputs. This paper introduces a method using discrete Fourier transform to generate synthetic time series with similar statistical moments to any given signal. The method allows control over the similarity level between the original and synthetic signals. Analytical proof shows that this method preserves the first two statistical moments and the autocorrelation function of the input signal. It is compared to ARMA, GAN, and CoSMoS methods using various environmental datasets with different temporal resolutions and domains, demonstrating its generality and flexibility. A Python library implementing this method is available as open-source software.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106283"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522400344X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic datasets are widely used in applications like missing data imputation, simulations, training data-driven models, and system robustness analysis. Typically based on historical data, these datasets need to represent specific system behaviors while being diverse enough to challenge the system with a broad range of inputs. This paper introduces a method using discrete Fourier transform to generate synthetic time series with similar statistical moments to any given signal. The method allows control over the similarity level between the original and synthetic signals. Analytical proof shows that this method preserves the first two statistical moments and the autocorrelation function of the input signal. It is compared to ARMA, GAN, and CoSMoS methods using various environmental datasets with different temporal resolutions and domains, demonstrating its generality and flexibility. A Python library implementing this method is available as open-source software.

Abstract Image

采用相似度控制合成随机环境时间序列,保持原始信号的统计特征
合成数据集广泛应用于缺失数据输入、模拟、训练数据驱动模型和系统鲁棒性分析等领域。通常基于历史数据,这些数据集需要表示特定的系统行为,同时具有足够的多样性,以广泛的输入挑战系统。本文介绍了一种利用离散傅立叶变换生成与任意给定信号具有相似统计矩的合成时间序列的方法。该方法允许控制原始信号和合成信号之间的相似度。分析证明,该方法保留了输入信号的前两个统计矩和自相关函数。将其与ARMA、GAN和CoSMoS方法进行了比较,这些方法使用了具有不同时间分辨率和域的各种环境数据集,证明了其通用性和灵活性。实现此方法的Python库可以作为开源软件获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信