Using an interaction timeline to investigate factors related to shedder status.

Duncan Taylor, Amy Cahill, Roland A H van Oorschot, Luke Volgin, Mariya Goray
{"title":"Using an interaction timeline to investigate factors related to shedder status.","authors":"Duncan Taylor, Amy Cahill, Roland A H van Oorschot, Luke Volgin, Mariya Goray","doi":"10.1016/j.fsigen.2024.103205","DOIUrl":null,"url":null,"abstract":"<p><p>A major factor that influences DNA transfer is the propensity of individuals to 'shed' DNA, commonly referred to as their 'shedder status'. In this work we provide a novel method to analyse and interrogate DNA transfer data from a largely uncontrolled study that tracks the movements and actions of a group of individuals over the course of an hour. By setting up a model that provides a simplistic description of the world, parameters within the model that represent properties of interest can be iteratively refined until the model can sufficiently describe a set of final DNA observations. Because the model describing reality can be constructed and parametrised in any desired configuration, aspects that may be difficult to traditionally test together can be investigated. To that end, we use a 60-min timeline of activity between four individuals and use DNA profiling results from objects taken at the conclusion of the hour to investigate factors that may affect shedder status. We simultaneously consider factors of: the amount of DNA transferred per contact, the rate of self-DNA regeneration, the capacity of hands to hold DNA, and the rate of non-self-DNA removal, all of which may ultimately contribute to someone's shedder status.</p>","PeriodicalId":94012,"journal":{"name":"Forensic science international. Genetics","volume":"76 ","pages":"103205"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international. Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.fsigen.2024.103205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A major factor that influences DNA transfer is the propensity of individuals to 'shed' DNA, commonly referred to as their 'shedder status'. In this work we provide a novel method to analyse and interrogate DNA transfer data from a largely uncontrolled study that tracks the movements and actions of a group of individuals over the course of an hour. By setting up a model that provides a simplistic description of the world, parameters within the model that represent properties of interest can be iteratively refined until the model can sufficiently describe a set of final DNA observations. Because the model describing reality can be constructed and parametrised in any desired configuration, aspects that may be difficult to traditionally test together can be investigated. To that end, we use a 60-min timeline of activity between four individuals and use DNA profiling results from objects taken at the conclusion of the hour to investigate factors that may affect shedder status. We simultaneously consider factors of: the amount of DNA transferred per contact, the rate of self-DNA regeneration, the capacity of hands to hold DNA, and the rate of non-self-DNA removal, all of which may ultimately contribute to someone's shedder status.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信