Surface encapsulation of ZIF-8 on Ag nanoparticles modified cotton swab for highly rapid and selective surface-enhanced Raman spectroscopy analysis of glucose and lactic acid in human sweat
Yahao Liu , Dabing Ren , Ying Gu , Fengmin Duan , Lunzhao Yi , Kun Ge
{"title":"Surface encapsulation of ZIF-8 on Ag nanoparticles modified cotton swab for highly rapid and selective surface-enhanced Raman spectroscopy analysis of glucose and lactic acid in human sweat","authors":"Yahao Liu , Dabing Ren , Ying Gu , Fengmin Duan , Lunzhao Yi , Kun Ge","doi":"10.1016/j.saa.2024.125525","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, ZIF-8 shell encapsulated Ag nanoparticles decorated cotton swab (CS@Ag@ZIF-8) was firstly designed and prepared for highly rapid and selective surface-enhanced Raman spectroscopy (SERS) analysis of glucose and lactic acid in human sweat. The CS not only act as support matrix for Ag modification and ZIF-8 encapsulation, but also provide great potential in-situ analysis of human sweat with low cost. The as-developed CS@Ag@ZIF-8 shows high SERS activity owing the good adsorption of ZIF-8 shell and electromagnetic enhancement of AgNPs. The 4-mercaptophenylboronic acid (4-MPBA) and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) with limits of detection (LOD) of 1.0 and 10.0 ng/L can be reached, as well as enhancement factor of 10<sup>8</sup> level. In addition, the good stability and repeatability of CS@Ag@ZIF-8 can be obtained in various conditions. The recognition probes based on 4-MPBA and DTNB modified CS@Ag@ZIF-8 were fabricated for rapid and selective detection of glucose and lactic acid in human sweat. The promising linearity in range of 0.1–100.0 μmol/L and 0.1–50.0 mmol/L with LOD of 0.04 μmol/L and 0.03 mmol/L for glucose and lactic acid were achieved, respectively. The detection errors between commercial meter and developed method was in range of –6.4 to 6.0 %. Our results provide a promising strategy in fabrication of portable SERS substrates with satisfied performance for rapid, selective and in-situ quantification of biomolecules in complex biological samples.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"329 ","pages":"Article 125525"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524016913","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, ZIF-8 shell encapsulated Ag nanoparticles decorated cotton swab (CS@Ag@ZIF-8) was firstly designed and prepared for highly rapid and selective surface-enhanced Raman spectroscopy (SERS) analysis of glucose and lactic acid in human sweat. The CS not only act as support matrix for Ag modification and ZIF-8 encapsulation, but also provide great potential in-situ analysis of human sweat with low cost. The as-developed CS@Ag@ZIF-8 shows high SERS activity owing the good adsorption of ZIF-8 shell and electromagnetic enhancement of AgNPs. The 4-mercaptophenylboronic acid (4-MPBA) and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) with limits of detection (LOD) of 1.0 and 10.0 ng/L can be reached, as well as enhancement factor of 108 level. In addition, the good stability and repeatability of CS@Ag@ZIF-8 can be obtained in various conditions. The recognition probes based on 4-MPBA and DTNB modified CS@Ag@ZIF-8 were fabricated for rapid and selective detection of glucose and lactic acid in human sweat. The promising linearity in range of 0.1–100.0 μmol/L and 0.1–50.0 mmol/L with LOD of 0.04 μmol/L and 0.03 mmol/L for glucose and lactic acid were achieved, respectively. The detection errors between commercial meter and developed method was in range of –6.4 to 6.0 %. Our results provide a promising strategy in fabrication of portable SERS substrates with satisfied performance for rapid, selective and in-situ quantification of biomolecules in complex biological samples.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.