Investigating dynamics in attentive and inattentive responding together with their contextual correlates using a novel mixture IRT model for intensive longitudinal data.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Leonie V D E Vogelsmeier, Irina Uglanova, Manuel T Rein, Esther Ulitzsch
{"title":"Investigating dynamics in attentive and inattentive responding together with their contextual correlates using a novel mixture IRT model for intensive longitudinal data.","authors":"Leonie V D E Vogelsmeier, Irina Uglanova, Manuel T Rein, Esther Ulitzsch","doi":"10.1111/bmsp.12373","DOIUrl":null,"url":null,"abstract":"<p><p>In ecological momentary assessment (EMA), respondents answer brief questionnaires about their current behaviours or experiences several times per day across multiple days. The frequent measurement enables a thorough grasp of the dynamics inherent in psychological constructs, but it also increases respondent burden. To lower this burden, respondents may engage in careless and insufficient effort responding (C/IER), leaving data contaminated with responses that do not reflect what researchers want to measure. We introduce a novel approach to investigating C/IER in EMA data. Our approach combines a confirmatory mixture item response theory model separating C/IER from attentive behaviour with latent Markov factor analysis. This enables gauging the occurrence of C/IER and studying transitions among states of different response behaviours including their contextual correlates. The approach can be implemented using R packages. An empirical application showcases the approach's efficacy in pinpointing C/IER instances and gaining insights into their underlying causes. We showcase that the approach identifies various C/IER response patterns but requires heterogeneous and negatively worded items to detect straightlining. In a simulation investigating robustness against unaccounted for changes in measurement models underlying attentive responses, the approach proved robust against heterogeneity in loading patterns but not against heterogeneity in factor structures. Extensions to accommodate the latter are discussed.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12373","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In ecological momentary assessment (EMA), respondents answer brief questionnaires about their current behaviours or experiences several times per day across multiple days. The frequent measurement enables a thorough grasp of the dynamics inherent in psychological constructs, but it also increases respondent burden. To lower this burden, respondents may engage in careless and insufficient effort responding (C/IER), leaving data contaminated with responses that do not reflect what researchers want to measure. We introduce a novel approach to investigating C/IER in EMA data. Our approach combines a confirmatory mixture item response theory model separating C/IER from attentive behaviour with latent Markov factor analysis. This enables gauging the occurrence of C/IER and studying transitions among states of different response behaviours including their contextual correlates. The approach can be implemented using R packages. An empirical application showcases the approach's efficacy in pinpointing C/IER instances and gaining insights into their underlying causes. We showcase that the approach identifies various C/IER response patterns but requires heterogeneous and negatively worded items to detect straightlining. In a simulation investigating robustness against unaccounted for changes in measurement models underlying attentive responses, the approach proved robust against heterogeneity in loading patterns but not against heterogeneity in factor structures. Extensions to accommodate the latter are discussed.

研究动态的注意和不注意的反应,连同他们的上下文相关使用一个新的混合IRT模型密集的纵向数据。
在生态瞬时评估(EMA)中,受访者每天在多个天内多次回答有关其当前行为或经历的简短问卷。频繁的测量可以彻底掌握心理结构中固有的动态,但也增加了被调查者的负担。为了减轻这一负担,受访者可能会漫不经心地做出不充分的努力回应(C/IER),从而使数据受到污染,而这些回应并不能反映研究人员想要衡量的内容。我们介绍了一种新的方法来研究EMA数据中的C/IER。我们的方法结合了将C/IER与注意行为分离的验证性混合项目反应理论模型和潜在马尔可夫因素分析。这可以衡量C/IER的发生,并研究不同反应行为状态之间的转换,包括其上下文相关性。该方法可以使用R包实现。一个实证应用展示了该方法在精确定位C/IER实例和深入了解其潜在原因方面的有效性。我们展示了该方法识别各种C/IER响应模式,但需要异构和负面措辞的项目来检测直线。在一项模拟研究中,研究了对潜在的注意力反应的测量模型的未解释变化的稳健性,该方法证明了对加载模式异质性的稳健性,但对因素结构异质性的稳健性。讨论了适应后者的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信