Alessia Santoni, Giuseppe Di Dona, David Melcher, Laura Franchin, Luca Ronconi
{"title":"Atypical oscillatory and aperiodic signatures of visual sampling in developmental dyslexia.","authors":"Alessia Santoni, Giuseppe Di Dona, David Melcher, Laura Franchin, Luca Ronconi","doi":"10.1016/j.nicl.2024.103720","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal processing deficits in Developmental Dyslexia (DD) have been documented extensively at the behavioral level, leading to the formulation of neural theories positing that such anomalies in parsing multisensory input rely on aberrant synchronization of neural oscillations or to an excessive level of neural noise. Despite reading being primarily supported by visual functions, experimental evidence supporting these theories remains scarce. Here, we tested 26 adults with DD (9 females) and 31 neurotypical controls (16 females) with a temporal segregation/integration task that required participants to either integrate or segregate two rapidly presented displays while their EEG activity was recorded. We confirmed a temporal sampling deficit in DD, which specifically affected the rapid segregation of visual input. While the ongoing alpha frequency and the excitation/inhibition (E/I) ratio (i.e., an index of neural noise quantified by the aperiodic exponent) were differently modulated based on task demands in typical readers, DD participants exhibited an impairment in alpha speed modulation and an altered E/I ratio that affected their rapid visual sampling. Nonetheless, an association between visual temporal sampling accuracy and both alpha frequency and the E/I ratio measured at rest were evident in the DD group, further confirming an anomalous interplay between alpha synchronization, the E/I ratio and active visual sampling. These results provide evidence that both trait- and state-like differences in alpha-band synchronization and neural noise levels coexist in the dyslexic brain and are synergistically responsible for cascade effects on visual sampling and reading.</p>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"45 ","pages":"103720"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nicl.2024.103720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal processing deficits in Developmental Dyslexia (DD) have been documented extensively at the behavioral level, leading to the formulation of neural theories positing that such anomalies in parsing multisensory input rely on aberrant synchronization of neural oscillations or to an excessive level of neural noise. Despite reading being primarily supported by visual functions, experimental evidence supporting these theories remains scarce. Here, we tested 26 adults with DD (9 females) and 31 neurotypical controls (16 females) with a temporal segregation/integration task that required participants to either integrate or segregate two rapidly presented displays while their EEG activity was recorded. We confirmed a temporal sampling deficit in DD, which specifically affected the rapid segregation of visual input. While the ongoing alpha frequency and the excitation/inhibition (E/I) ratio (i.e., an index of neural noise quantified by the aperiodic exponent) were differently modulated based on task demands in typical readers, DD participants exhibited an impairment in alpha speed modulation and an altered E/I ratio that affected their rapid visual sampling. Nonetheless, an association between visual temporal sampling accuracy and both alpha frequency and the E/I ratio measured at rest were evident in the DD group, further confirming an anomalous interplay between alpha synchronization, the E/I ratio and active visual sampling. These results provide evidence that both trait- and state-like differences in alpha-band synchronization and neural noise levels coexist in the dyslexic brain and are synergistically responsible for cascade effects on visual sampling and reading.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.