Current advancements in fungal engineering technologies for Sustainable Development Goals.

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shilpa Garg, Minji Kim, David Romero-Suarez
{"title":"Current advancements in fungal engineering technologies for Sustainable Development Goals.","authors":"Shilpa Garg, Minji Kim, David Romero-Suarez","doi":"10.1016/j.tim.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi are emerging as key organisms in tackling global challenges related to agricultural and food productivity, environmental sustainability, and climate change. This review delves into the transformative potential of fungal genomics and metabolic engineering, two forefront fields in modern biotechnology. Fungal genomics entails the thorough analysis and manipulation of fungal genetic material to enhance desirable traits, such as pest resistance, nutrient absorption, and stress tolerance. Metabolic engineering focuses on altering the biochemical pathways within fungi to optimize the production of valuable compounds, including biofuels, pharmaceuticals, and industrial enzymes. By artificial intelligence (AI)-driven integration of genetic and metabolic engineering techniques, we can harness the unique capabilities of both filamentous and mycorrhizal fungi to develop sustainable agricultural practices, enhance soil health, and promote ecosystem restoration. This review explores the current state of research, technological advancements, and practical applications, offering insights into scalability challenges on how integrative fungal genomics and metabolic engineering can deliver innovative solutions for a sustainable future.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.11.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungi are emerging as key organisms in tackling global challenges related to agricultural and food productivity, environmental sustainability, and climate change. This review delves into the transformative potential of fungal genomics and metabolic engineering, two forefront fields in modern biotechnology. Fungal genomics entails the thorough analysis and manipulation of fungal genetic material to enhance desirable traits, such as pest resistance, nutrient absorption, and stress tolerance. Metabolic engineering focuses on altering the biochemical pathways within fungi to optimize the production of valuable compounds, including biofuels, pharmaceuticals, and industrial enzymes. By artificial intelligence (AI)-driven integration of genetic and metabolic engineering techniques, we can harness the unique capabilities of both filamentous and mycorrhizal fungi to develop sustainable agricultural practices, enhance soil health, and promote ecosystem restoration. This review explores the current state of research, technological advancements, and practical applications, offering insights into scalability challenges on how integrative fungal genomics and metabolic engineering can deliver innovative solutions for a sustainable future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信