Closely related and yet special - how SPβ family phages control lysis-lysogeny decisions.

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katharina Kohm, Annabel V Clanner, Robert Hertel, Fabian M Commichau
{"title":"Closely related and yet special - how SPβ family phages control lysis-lysogeny decisions.","authors":"Katharina Kohm, Annabel V Clanner, Robert Hertel, Fabian M Commichau","doi":"10.1016/j.tim.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>Soon after the discovery of genetic competence in the Gram-positive bacterium Bacillus subtilis, lytic and temperate phages that infect this organism were isolated. For instance, the lytic phage ϕ29 became a model for studying processes such as viral DNA packaging, replication, and transcription. By contrast, only a handful of temperate B. subtilis phages have been comprehensively characterized. However, the discovery of a peptide-based quorum sensing (QS) system in 2017 has brought temperate B. subtilis phages, particularly those of the SPβ family, back into the focus of research. The QS system is used by these phages to modulate lysis-lysogeny decisions. Meanwhile, many key components of the lysis-lysogeny management system have been identified. It turned out that a complex co-adaptation between the B. subtilis host cell and SPβ-like phages occurred during evolution and that a host-encoded toxin-antitoxin system plays a key role in controlling lysis-lysogeny decisions. There are many similarities and many important differences between the two well-studied model phages. Thus, a further comparative analysis of the lysis-lysogeny systems is essential to uncover the fundamental differences between ϕ3T and SPβ. Moreover, we believe that it would be exciting to revive research on temperate B. subtilis phages that are not related to SPβ-family phages.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.11.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soon after the discovery of genetic competence in the Gram-positive bacterium Bacillus subtilis, lytic and temperate phages that infect this organism were isolated. For instance, the lytic phage ϕ29 became a model for studying processes such as viral DNA packaging, replication, and transcription. By contrast, only a handful of temperate B. subtilis phages have been comprehensively characterized. However, the discovery of a peptide-based quorum sensing (QS) system in 2017 has brought temperate B. subtilis phages, particularly those of the SPβ family, back into the focus of research. The QS system is used by these phages to modulate lysis-lysogeny decisions. Meanwhile, many key components of the lysis-lysogeny management system have been identified. It turned out that a complex co-adaptation between the B. subtilis host cell and SPβ-like phages occurred during evolution and that a host-encoded toxin-antitoxin system plays a key role in controlling lysis-lysogeny decisions. There are many similarities and many important differences between the two well-studied model phages. Thus, a further comparative analysis of the lysis-lysogeny systems is essential to uncover the fundamental differences between ϕ3T and SPβ. Moreover, we believe that it would be exciting to revive research on temperate B. subtilis phages that are not related to SPβ-family phages.

SPβ家族噬菌体如何控制裂解-溶原性决定?
在革兰氏阳性细菌枯草芽孢杆菌中发现遗传能力后不久,感染这种有机体的裂解和温带噬菌体被分离出来。例如,裂解噬菌体29成为研究病毒DNA包装、复制和转录等过程的模型。相比之下,只有少数温带枯草芽孢杆菌噬菌体被全面表征。然而,2017年基于肽的群体感应(QS)系统的发现使温带枯草芽孢杆菌噬菌体,特别是SPβ家族的噬菌体重新成为研究的焦点。这些噬菌体使用QS系统来调节裂解-溶原性的决定。同时,还确定了溶解菌-溶原性管理系统的许多关键组成部分。结果表明,枯草芽孢杆菌宿主细胞和sp β样噬菌体在进化过程中发生了复杂的共适应,宿主编码的毒素-抗毒素系统在控制裂解-溶原性决策中起着关键作用。这两种模型噬菌体有许多相似之处,也有许多重要的区别。因此,进一步的裂解-溶原系统的比较分析是必要的,以揭示根本差异之间的ϕ3T和SPβ。此外,我们相信恢复与sp β家族噬菌体无关的温带枯草芽孢杆菌噬菌体的研究将是令人兴奋的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信