Intestinal stem cell-derived extracellular vesicles ameliorate necrotizing enterocolitis injury.

IF 2.3 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Le Zhang, Jiahong Li, Qiwen Wan, Chaozhi Bu, Weilai Jin, Fuqiang Yuan, Wenhao Zhou
{"title":"Intestinal stem cell-derived extracellular vesicles ameliorate necrotizing enterocolitis injury.","authors":"Le Zhang, Jiahong Li, Qiwen Wan, Chaozhi Bu, Weilai Jin, Fuqiang Yuan, Wenhao Zhou","doi":"10.1016/j.mcp.2024.101997","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic potential of intestinal stem cell-derived extracellular vesicles (ISCs-EVs) in necrotizing enterocolitis (NEC) remains largely unexplored. This research aims to investigate the therapeutic effects of ISCs-EVs on NEC. Lgr5-positive ISCs were screened from the small intestine of mice by flow cytometry, and ISCs-EVs were isolated by density gradient centrifugation. Subsequently, ISCs-EVs were identified through transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Subsequently, we evaluated the efficacy of ISCs-EVs in a mouse model of NEC and found that they enhanced survival (more than 20 %), reduced intestinal damage (restore the number of intestinal crypts and decrease the expression of MPO and cleaved-caspase 3 in intestinal tissues), promoted angiogenesis (the mRNA expression of VEGF was increased by approximately 35 %), and mitigated inflammation (decreased the level of MUC1, p-NF-κB, IL-6 and TNF-α). Furthermore, in vitro assessments demonstrated that ISCs-EVs reduced apoptosis (P < 0.01) and stimulated proliferation (P < 0.05) of IEC-6 cells, while enhancing mucin secretion in LS174T cells. In summary, our study provides a comprehensive assessment of the therapeutic effects of ISCs-EVs on NEC, using both animal and cell models. This highlights their potential for use in NEC treatment.</p>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":" ","pages":"101997"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.mcp.2024.101997","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The therapeutic potential of intestinal stem cell-derived extracellular vesicles (ISCs-EVs) in necrotizing enterocolitis (NEC) remains largely unexplored. This research aims to investigate the therapeutic effects of ISCs-EVs on NEC. Lgr5-positive ISCs were screened from the small intestine of mice by flow cytometry, and ISCs-EVs were isolated by density gradient centrifugation. Subsequently, ISCs-EVs were identified through transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Subsequently, we evaluated the efficacy of ISCs-EVs in a mouse model of NEC and found that they enhanced survival (more than 20 %), reduced intestinal damage (restore the number of intestinal crypts and decrease the expression of MPO and cleaved-caspase 3 in intestinal tissues), promoted angiogenesis (the mRNA expression of VEGF was increased by approximately 35 %), and mitigated inflammation (decreased the level of MUC1, p-NF-κB, IL-6 and TNF-α). Furthermore, in vitro assessments demonstrated that ISCs-EVs reduced apoptosis (P < 0.01) and stimulated proliferation (P < 0.05) of IEC-6 cells, while enhancing mucin secretion in LS174T cells. In summary, our study provides a comprehensive assessment of the therapeutic effects of ISCs-EVs on NEC, using both animal and cell models. This highlights their potential for use in NEC treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Probes
Molecular and Cellular Probes 生物-生化研究方法
CiteScore
6.80
自引率
0.00%
发文量
52
审稿时长
16 days
期刊介绍: MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.
文献相关原料
公司名称 产品信息 采购帮参考价格
上海吉至 DAPI staining solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信