{"title":"The parameter mapping of power ultrasonic transducer model.","authors":"Junfan Fu, Bin Lin, Tianyi Sui, Baokun Dong","doi":"10.1016/j.ultras.2024.107533","DOIUrl":null,"url":null,"abstract":"<p><p>The vibration and electrical characteristics of transducer is determined by material coefficients and geometry, with material coefficients being susceptible to factors including frequency, pressure, and temperature, which leads to poor repeatability of transducer characteristics. Consequently, it is challenging to provide an accurate theoretical model to predict the characteristics based on the current material coefficients. To achieve a more accurate transducer model, a measurement method is proposed based on the mapping between material coefficients and transducer characteristic parameters to obtain accurate coefficients under working conditions with simple equipment and lower costs. The mapping is analyzed based on the transducer model, identifying five key coefficients. An iterative optimization method is then developed to measure these coefficients. Additionally, the genetic algorithm (GA) method is utilized for cross-checking. Transducers made from seven different materials and with varying lengths are measured, and the coefficients are obtained by both methods. With the obtained coefficients, the vibration and electrical characteristics of multi-material transducers is predicted and found to be in good agreement with the measured values, validating the transducer model and the coefficient measurement method. These coefficients are then compared with results obtained from a dynamic mechanical analyzer (DMA) and reference values. The results demonstrate that theoretical coefficients obtained by the proposed method lead to more accurate predictions for the vibration and electrical characteristics compared to those obtained from the DMA and reference values. Furthermore, the influence of frequency on the coefficients is studied by the method. The iterative method and GA method are compared in terms of their relative errors.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"107533"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ultras.2024.107533","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The vibration and electrical characteristics of transducer is determined by material coefficients and geometry, with material coefficients being susceptible to factors including frequency, pressure, and temperature, which leads to poor repeatability of transducer characteristics. Consequently, it is challenging to provide an accurate theoretical model to predict the characteristics based on the current material coefficients. To achieve a more accurate transducer model, a measurement method is proposed based on the mapping between material coefficients and transducer characteristic parameters to obtain accurate coefficients under working conditions with simple equipment and lower costs. The mapping is analyzed based on the transducer model, identifying five key coefficients. An iterative optimization method is then developed to measure these coefficients. Additionally, the genetic algorithm (GA) method is utilized for cross-checking. Transducers made from seven different materials and with varying lengths are measured, and the coefficients are obtained by both methods. With the obtained coefficients, the vibration and electrical characteristics of multi-material transducers is predicted and found to be in good agreement with the measured values, validating the transducer model and the coefficient measurement method. These coefficients are then compared with results obtained from a dynamic mechanical analyzer (DMA) and reference values. The results demonstrate that theoretical coefficients obtained by the proposed method lead to more accurate predictions for the vibration and electrical characteristics compared to those obtained from the DMA and reference values. Furthermore, the influence of frequency on the coefficients is studied by the method. The iterative method and GA method are compared in terms of their relative errors.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.