Transcriptome-guided breeding for Paspalum notatum: producing apomictic hybrids with enhanced omega-3 content.

IF 4.4 1区 农林科学 Q1 AGRONOMY
Lara Marino, Silvia Altabe, Carolina Marta Colono, Maricel Podio, Juan Pablo Amelio Ortiz, David Balaban, Juliana Stein, Nicolás Spoto, Carlos Acuña, Lorena Adelina Siena, José Gerde, Emidio Albertini, Silvina Claudia Pessino
{"title":"Transcriptome-guided breeding for Paspalum notatum: producing apomictic hybrids with enhanced omega-3 content.","authors":"Lara Marino, Silvia Altabe, Carolina Marta Colono, Maricel Podio, Juan Pablo Amelio Ortiz, David Balaban, Juliana Stein, Nicolás Spoto, Carlos Acuña, Lorena Adelina Siena, José Gerde, Emidio Albertini, Silvina Claudia Pessino","doi":"10.1007/s00122-024-04788-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Transcriptomics- and FAME-GC-MS-assisted apomixis breeding generated Paspalum notatum hybrids with clonal reproduction and increased α-linolenic acid content, offering the potential to enhance livestock product's nutritional quality and reduce methane emissions A low omega-6:omega-3 fatty acid ratio is considered an indicator of the nutritional impact of milk fat on human health. In ruminants, major long-chain fatty acids, such as linoleic acid (18:2, omega-6) and α-linolenic acid (18:3, omega-3), originate from dietary sources and reach the milk via the bloodstream. Since forages are the primary source of long-chain fatty acids for such animals, they are potential targets for improving milk lipid composition. Moreover, a high 18:3 content in their diet is associated with reduced methane emissions during grazing. This work aimed to develop genotypes of the forage grass Paspalum notatum with high leaf 18:3 content and the ability for clonal reproduction via seeds (apomixis). We assembled diploid and polyploid Paspalum notatum leaf transcriptomes and recovered sequences of two metabolism genes associated with the establishment of lipid profiles, namely SUGAR-DEPENDENT 1 (SDP1) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1). Primers were designed to amplify all expressed paralogs in leaves. qPCR was used to analyse SDP1 and PXA1 expression in seven divergent genotypes. Reduced levels of SDP1 and PXA1 were found in the polyploid sexual genotype Q4188. Fatty acid methyl esters/gas chromatography/mass spectrometry (FAME/GC/MS) assays confirmed an increased percentage of 18:3 in this genotype. Crosses between Q4188 and the obligate apomictic pollen donor Q4117 resulted in two apomictic F<sub>1</sub> hybrids (JS9 and JS71) with reduced SDP1 and PXA1 levels, increased 18:3 content, and clonal maternal reproduction. These materials could enhance milk and meat quality while reducing greenhouse gas emissions during grazing.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"2"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04788-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Transcriptomics- and FAME-GC-MS-assisted apomixis breeding generated Paspalum notatum hybrids with clonal reproduction and increased α-linolenic acid content, offering the potential to enhance livestock product's nutritional quality and reduce methane emissions A low omega-6:omega-3 fatty acid ratio is considered an indicator of the nutritional impact of milk fat on human health. In ruminants, major long-chain fatty acids, such as linoleic acid (18:2, omega-6) and α-linolenic acid (18:3, omega-3), originate from dietary sources and reach the milk via the bloodstream. Since forages are the primary source of long-chain fatty acids for such animals, they are potential targets for improving milk lipid composition. Moreover, a high 18:3 content in their diet is associated with reduced methane emissions during grazing. This work aimed to develop genotypes of the forage grass Paspalum notatum with high leaf 18:3 content and the ability for clonal reproduction via seeds (apomixis). We assembled diploid and polyploid Paspalum notatum leaf transcriptomes and recovered sequences of two metabolism genes associated with the establishment of lipid profiles, namely SUGAR-DEPENDENT 1 (SDP1) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1). Primers were designed to amplify all expressed paralogs in leaves. qPCR was used to analyse SDP1 and PXA1 expression in seven divergent genotypes. Reduced levels of SDP1 and PXA1 were found in the polyploid sexual genotype Q4188. Fatty acid methyl esters/gas chromatography/mass spectrometry (FAME/GC/MS) assays confirmed an increased percentage of 18:3 in this genotype. Crosses between Q4188 and the obligate apomictic pollen donor Q4117 resulted in two apomictic F1 hybrids (JS9 and JS71) with reduced SDP1 and PXA1 levels, increased 18:3 content, and clonal maternal reproduction. These materials could enhance milk and meat quality while reducing greenhouse gas emissions during grazing.

转录组引导的雀稗育种:生产具有增强omega-3含量的无分裂杂交雀稗。
转录组学和fame - gc - ms辅助无杂交育种获得了无性系繁殖的雀稗杂种,α-亚麻酸含量增加,有可能提高畜产品的营养质量和减少甲烷排放。低omega-6:omega-3脂肪酸比例被认为是乳脂对人类健康营养影响的一个指标。在反刍动物中,主要的长链脂肪酸,如亚油酸(18:2,ω -6)和α-亚麻酸(18:3,ω -3),来源于饮食来源,并通过血液到达乳汁。由于饲料是这些动物长链脂肪酸的主要来源,它们是改善牛奶脂质组成的潜在目标。此外,它们的饮食中18:3的高含量与放牧期间甲烷排放的减少有关。本研究旨在培育具有高叶片18:3含量和种子无性繁殖能力的牧草雀稗(Paspalum notatum)的基因型。我们组装了二倍体和多倍体雀稗叶片转录组,并恢复了与脂质谱建立相关的两个代谢基因序列,即糖依赖性1 (SDP1)和过氧化物酶体ABC转运蛋白1 (PXA1)。引物设计用于扩增叶片中所有表达的相似物。采用qPCR分析了7个不同基因型中SDP1和PXA1的表达。在多倍体性基因型Q4188中发现SDP1和PXA1水平降低。脂肪酸甲酯/气相色谱/质谱分析(FAME/GC/MS)证实该基因型的比例增加了18:3。Q4188与专性无分裂花粉供体Q4117杂交得到两个无分裂F1杂种JS9和JS71,其SDP1和PXA1水平降低,18:3含量增加,母代无性系繁殖能力增强。这些材料可以提高牛奶和肉类的品质,同时减少放牧过程中的温室气体排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信