{"title":"Intra- and inter-channel deep convolutional neural network with dynamic label smoothing for multichannel biosignal analysis.","authors":"Peiji Chen, Wenyang Li, Yifan Tang, Shunta Togo, Hiroshi Yokoi, Yinlai Jiang","doi":"10.1016/j.neunet.2024.106960","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient processing of multichannel biosignals has significant application values in the fields of healthcare and human-machine interaction. Although previous research has achieved high recognition performance with deep convolutional neural networks, several key challenges still remain: (1) Effective extraction of spatial and temporal features from the multichannel biosignals. (2) Appropriate trade-off between performance and complexity for improving applicability in real-life situations given that traditional machine learning and 2D-based CNN approaches often involve excessive preprocessing steps or model parameters; and (3) Generalization ability of neural networks to compensate for domain difference and to reduce overfitting during training process. To address challenges 1 and 2, we propose a 1D-based deep intra and inter channel (I2C) convolution neural network. The I2C convolutional block is introduced to replace the standard convolutional layer, further extending it to several state-of-the-art modules, with the intent of extracting more effective features from multichannel biosignals with fewer parameters. To address challenge 3, we integrate a branch model into the main model to perform dynamic label smoothing, enabling the model to learn domain difference and improve its generalization ability. Experiments were conducted on three public multichannel biosignals databases, namely ISRUC-S3, HEF and Ninapro-DB1. The results suggest that the proposed method exhibits significant competitive advantages in accuracy, complexity, and generalization ability.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106960"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106960","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient processing of multichannel biosignals has significant application values in the fields of healthcare and human-machine interaction. Although previous research has achieved high recognition performance with deep convolutional neural networks, several key challenges still remain: (1) Effective extraction of spatial and temporal features from the multichannel biosignals. (2) Appropriate trade-off between performance and complexity for improving applicability in real-life situations given that traditional machine learning and 2D-based CNN approaches often involve excessive preprocessing steps or model parameters; and (3) Generalization ability of neural networks to compensate for domain difference and to reduce overfitting during training process. To address challenges 1 and 2, we propose a 1D-based deep intra and inter channel (I2C) convolution neural network. The I2C convolutional block is introduced to replace the standard convolutional layer, further extending it to several state-of-the-art modules, with the intent of extracting more effective features from multichannel biosignals with fewer parameters. To address challenge 3, we integrate a branch model into the main model to perform dynamic label smoothing, enabling the model to learn domain difference and improve its generalization ability. Experiments were conducted on three public multichannel biosignals databases, namely ISRUC-S3, HEF and Ninapro-DB1. The results suggest that the proposed method exhibits significant competitive advantages in accuracy, complexity, and generalization ability.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.