Lauren G Singleton, Kelsey F Thompson, Jordyn Carroll, Rachel A Kohman
{"title":"Middle-aged females are resistant to LPS-induced learning deficits: Sex comparison.","authors":"Lauren G Singleton, Kelsey F Thompson, Jordyn Carroll, Rachel A Kohman","doi":"10.1016/j.neulet.2024.138072","DOIUrl":null,"url":null,"abstract":"<p><p>Preclinical data have repeatedly shown learning and memory disruption following administration of the bacterial endotoxin lipopolysaccharide (LPS). Normal aging is reported to enhance vulnerability to LPS-induced cognitive impairments. However, a limitation is the primary use of male subjects. Recent evidence indicates sex-related differences in vulnerability to LPS-induced cognitive deficits [1,2], with young females showing resilience. Whether middle-aged females are susceptible to LPS-induced cognitive impairment is unknown. The current experiment compared associative learning in young and middle-aged male and female C57BL/6J mice following a systemic LPS challenge. While LPS impaired acquisition of the two-way active avoidance conditioning task in adult and middle-aged males, females' learning was unaffected. The sex difference in LPS-induced cognitive impairments appears unrelated to responsivity to LPS, as males and females mount a comparable sickness-like response. Additionally, relative to males, females produce higher brain levels of interleukin-6 (IL-6) and comparable splenic IL-6 levels following LPS. These data demonstrate that female resilience to LPS-induced learning deficits persists into middle age, whereas males are vulnerable as both young and middle-aged adults. Our findings confirm the importance of considering sex as a biological variable and extend the existing literature by evaluating sex-related responsivity to LPS in middle-aged males and females.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"845 ","pages":"138072"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138072","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Preclinical data have repeatedly shown learning and memory disruption following administration of the bacterial endotoxin lipopolysaccharide (LPS). Normal aging is reported to enhance vulnerability to LPS-induced cognitive impairments. However, a limitation is the primary use of male subjects. Recent evidence indicates sex-related differences in vulnerability to LPS-induced cognitive deficits [1,2], with young females showing resilience. Whether middle-aged females are susceptible to LPS-induced cognitive impairment is unknown. The current experiment compared associative learning in young and middle-aged male and female C57BL/6J mice following a systemic LPS challenge. While LPS impaired acquisition of the two-way active avoidance conditioning task in adult and middle-aged males, females' learning was unaffected. The sex difference in LPS-induced cognitive impairments appears unrelated to responsivity to LPS, as males and females mount a comparable sickness-like response. Additionally, relative to males, females produce higher brain levels of interleukin-6 (IL-6) and comparable splenic IL-6 levels following LPS. These data demonstrate that female resilience to LPS-induced learning deficits persists into middle age, whereas males are vulnerable as both young and middle-aged adults. Our findings confirm the importance of considering sex as a biological variable and extend the existing literature by evaluating sex-related responsivity to LPS in middle-aged males and females.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.