Unraveling the interplay between phylogeny and chemical niches in epiphytic macrolichens.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Yngvar Gauslaa, Jason Hollinger, Trevor Goward, Johan Asplund
{"title":"Unraveling the interplay between phylogeny and chemical niches in epiphytic macrolichens.","authors":"Yngvar Gauslaa, Jason Hollinger, Trevor Goward, Johan Asplund","doi":"10.1007/s00442-024-05641-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to elucidate the connection between the phylogeny of epiphytic macrolichens and their chemical niches. We analyzed published floristic and environmental data from 90 canopies of Picea glauca x engelmannii across various forest settings in British Columbia. To explore the concordance between a principal coordinates analysis of the cladistic distance matrix and a global non-metric multidimensional scaling of the ecological distance matrix, we used Procrustean randomization tests. The findings uncover a robust association between large-scale macrolichen phylogeny and canopy throughfall chemistry. The high calcium-scores of the studied species effectively distinguished members of the Peltigerales from those of the Lecanorales, although parameters linked with Ca such as Mn, Mg, K, bark-, and soil-pH, may contribute to the niche partitioning along the oligotrophic-mesotrophic gradient. The substantial large-scale phylogenetic variation in the macrolichens' Ca-scores is consistent with an ancient adaptation to specialized chemical environments. Conversely, the minor variation in Ca-scores within families and genera likely stems from more recent adaptation. This study highlights crucial functional and chemical differences between members of the Lecanorales and Peltigerales. The deep phylogenetic connection to the chemical environment underscores the value of lichens as transferable bioindicators for the chemical environment and emphasizes the importance of elucidating the intricate interplay between chemical factors and lichen evolution.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"4"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05641-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to elucidate the connection between the phylogeny of epiphytic macrolichens and their chemical niches. We analyzed published floristic and environmental data from 90 canopies of Picea glauca x engelmannii across various forest settings in British Columbia. To explore the concordance between a principal coordinates analysis of the cladistic distance matrix and a global non-metric multidimensional scaling of the ecological distance matrix, we used Procrustean randomization tests. The findings uncover a robust association between large-scale macrolichen phylogeny and canopy throughfall chemistry. The high calcium-scores of the studied species effectively distinguished members of the Peltigerales from those of the Lecanorales, although parameters linked with Ca such as Mn, Mg, K, bark-, and soil-pH, may contribute to the niche partitioning along the oligotrophic-mesotrophic gradient. The substantial large-scale phylogenetic variation in the macrolichens' Ca-scores is consistent with an ancient adaptation to specialized chemical environments. Conversely, the minor variation in Ca-scores within families and genera likely stems from more recent adaptation. This study highlights crucial functional and chemical differences between members of the Lecanorales and Peltigerales. The deep phylogenetic connection to the chemical environment underscores the value of lichens as transferable bioindicators for the chemical environment and emphasizes the importance of elucidating the intricate interplay between chemical factors and lichen evolution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信