Alan Rodríguez, Fernanda Baena-Díaz, Denisse Maldonado-Sánchez, Rogelio Macías-Ordóñez, Carla Gutiérrez-Rodríguez
{"title":"Genetic Diversity of the Stingless Bee Scaptotrigona mexicana (Guérin) in the Gulf of Mexico Slope.","authors":"Alan Rodríguez, Fernanda Baena-Díaz, Denisse Maldonado-Sánchez, Rogelio Macías-Ordóñez, Carla Gutiérrez-Rodríguez","doi":"10.1007/s13744-024-01213-x","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic diversity is an important attribute of populations, essential for understanding the ecological and evolutionary processes affecting them and assessing their health status. In Hymenoptera, such as eusocial bees, colony management can influence genetic diversity in both natural and managed populations. Management can impact admixture, increasing the number of alleles due to colony displacement and decreasing the number of alleles in natural populations due to colony extraction. In this study, we analyzed genetic diversity in natural and managed colonies as well as in drone congregations of Scaptotrigona mexicana (Guérin), to assess genetic diversity, patterns of genetic structure and gene flow, and the presence of diploid males. We identified three distinct genetic groups: Northern, Central, and Southern. Although genetic differentiation and limited gene flow among genetic groups were evident, we detected significant gene flow from wild to managed populations, suggesting that natural populations can be an important reservoir of genetic diversity. The highest genetic diversity was found in the Northern group, composed of managed localities. This is likely due to the introduction of new alleles through to colony translocation. Notably, some loci exhibited more than three alleles in localities where all analyzed individuals were from the same colony, indicating possible polyandry in the species. We also detected diploid males, which suggests inbreeding and/or inefficient mechanisms for their elimination from the colony. Our results provide an initial assessment of genetic diversity in both natural and managed populations, as well as in drone congregations of S. mexicana.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":"54 1","pages":"4"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-024-01213-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic diversity is an important attribute of populations, essential for understanding the ecological and evolutionary processes affecting them and assessing their health status. In Hymenoptera, such as eusocial bees, colony management can influence genetic diversity in both natural and managed populations. Management can impact admixture, increasing the number of alleles due to colony displacement and decreasing the number of alleles in natural populations due to colony extraction. In this study, we analyzed genetic diversity in natural and managed colonies as well as in drone congregations of Scaptotrigona mexicana (Guérin), to assess genetic diversity, patterns of genetic structure and gene flow, and the presence of diploid males. We identified three distinct genetic groups: Northern, Central, and Southern. Although genetic differentiation and limited gene flow among genetic groups were evident, we detected significant gene flow from wild to managed populations, suggesting that natural populations can be an important reservoir of genetic diversity. The highest genetic diversity was found in the Northern group, composed of managed localities. This is likely due to the introduction of new alleles through to colony translocation. Notably, some loci exhibited more than three alleles in localities where all analyzed individuals were from the same colony, indicating possible polyandry in the species. We also detected diploid males, which suggests inbreeding and/or inefficient mechanisms for their elimination from the colony. Our results provide an initial assessment of genetic diversity in both natural and managed populations, as well as in drone congregations of S. mexicana.
期刊介绍:
Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.