Fernanda Esposito, Fábio P Sellera, Brenda Cardoso, Deborah Brandt-Almeida, Sandra Vargas-Otalora, Sebastián Cifuentes, Mauro Cortez, Nilton Lincopan
{"title":"Ciprofloxacin-induced mucoviscosity in ESBL-positive Escherichia coli carrying the Klebsiella pneumoniae K23 capsular structure hinders phagocytosis.","authors":"Fernanda Esposito, Fábio P Sellera, Brenda Cardoso, Deborah Brandt-Almeida, Sandra Vargas-Otalora, Sebastián Cifuentes, Mauro Cortez, Nilton Lincopan","doi":"10.1016/j.micpath.2024.107207","DOIUrl":null,"url":null,"abstract":"<p><p>Escherichia coli is a Gram-negative ubiquitous bacteria occurring in a diversity of environments including water, soil, and the gastrointestinal tract of humans and warm-blooded animals, being classified into commensal and pathogenic strains. While empirical antibiotic therapy with fluoroquinolones, such a ciprofloxacin and norfloxacin, has been a common practice, resistance to broad-spectrum cephalosporins, mediated by extended-spectrum β-lactamases (ESBLs), has been alerted as a critical priority by the World Health Organization. Additionally, the convergence of virulence and resistance has been observed in some E. coli strains, which enable these bacteria to infect humans and animals, and can jeopardize their health. Mucoviscosity phenotype has been frequently described in highly-virulent Klebsiella pneumoniae strains, whereas this phenotypic behavior remains rarely reported in E. coli. Herein, we report microbiological, genomic, and anti-phagocytic activity of ciprofloxacin-induced mucoviscosity in a CTX-M-15 (ESBL)-positive E. coli. Noteworthy, genomic analysis revealed virulence genes responsible for the synthesis of the K23 capsule type, previously described in hypermucoviscous K. pneumoniae lineages, whereas phagocytosis assays confirmed the ability of K23 E. coli strain to evade the immune system under mucoviscosity induction by ciprofloxacin treatment.</p>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":" ","pages":"107207"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micpath.2024.107207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Escherichia coli is a Gram-negative ubiquitous bacteria occurring in a diversity of environments including water, soil, and the gastrointestinal tract of humans and warm-blooded animals, being classified into commensal and pathogenic strains. While empirical antibiotic therapy with fluoroquinolones, such a ciprofloxacin and norfloxacin, has been a common practice, resistance to broad-spectrum cephalosporins, mediated by extended-spectrum β-lactamases (ESBLs), has been alerted as a critical priority by the World Health Organization. Additionally, the convergence of virulence and resistance has been observed in some E. coli strains, which enable these bacteria to infect humans and animals, and can jeopardize their health. Mucoviscosity phenotype has been frequently described in highly-virulent Klebsiella pneumoniae strains, whereas this phenotypic behavior remains rarely reported in E. coli. Herein, we report microbiological, genomic, and anti-phagocytic activity of ciprofloxacin-induced mucoviscosity in a CTX-M-15 (ESBL)-positive E. coli. Noteworthy, genomic analysis revealed virulence genes responsible for the synthesis of the K23 capsule type, previously described in hypermucoviscous K. pneumoniae lineages, whereas phagocytosis assays confirmed the ability of K23 E. coli strain to evade the immune system under mucoviscosity induction by ciprofloxacin treatment.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)