Topological states in finite graphene nanoribbons tuned by electric fields.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
David M T Kuo
{"title":"Topological states in finite graphene nanoribbons tuned by electric fields.","authors":"David M T Kuo","doi":"10.1088/1361-648X/ad9b62","DOIUrl":null,"url":null,"abstract":"<p><p>In this comprehensive study, we conduct a theoretical investigation into the Stark shift of topological states (TSs) in finite armchair graphene nanoribbons (AGNRs) and heterostructures under transverse electric fields. Our focus centers on the multiple end zigzag edge states of AGNRs and the interface states of9--7--9AGNR heterostructures. For the formal TSs, we observe a distinctive blue Stark shift in energy levels relative to the electric field within a range where the energy levels of TSs do not merge into the energy levels of bulk states. Conversely, for the latter TSs, we identify an oscillatory Stark shift in energy levels around the Fermi level. Simultaneously, we reveal the impact of the Stark effect on the transmission coefficients for both types of TSs. Notably, we uncover intriguing spectra in the multiple end zigzag edge states. In the case of finite9--7--9AGNR heterostructures, the spectra of transmission coefficient reveal that the coupling strength between the topological interface states can be well controlled by the transverse electric fields. The outcomes of this research not only contribute to a deeper understanding of the electronic property in graphene-based materials but also pave the way for innovations in next-generation electronic devices and quantum technologies.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9b62","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this comprehensive study, we conduct a theoretical investigation into the Stark shift of topological states (TSs) in finite armchair graphene nanoribbons (AGNRs) and heterostructures under transverse electric fields. Our focus centers on the multiple end zigzag edge states of AGNRs and the interface states of9--7--9AGNR heterostructures. For the formal TSs, we observe a distinctive blue Stark shift in energy levels relative to the electric field within a range where the energy levels of TSs do not merge into the energy levels of bulk states. Conversely, for the latter TSs, we identify an oscillatory Stark shift in energy levels around the Fermi level. Simultaneously, we reveal the impact of the Stark effect on the transmission coefficients for both types of TSs. Notably, we uncover intriguing spectra in the multiple end zigzag edge states. In the case of finite9--7--9AGNR heterostructures, the spectra of transmission coefficient reveal that the coupling strength between the topological interface states can be well controlled by the transverse electric fields. The outcomes of this research not only contribute to a deeper understanding of the electronic property in graphene-based materials but also pave the way for innovations in next-generation electronic devices and quantum technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信