Efficient yeast breeding using a sake metabolome analysis for a strain evaluation.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Risako Kinoshita, Muneyoshi Kanai, Kaoru Takegawa, Kazuhiro Iwashita
{"title":"Efficient yeast breeding using a sake metabolome analysis for a strain evaluation.","authors":"Risako Kinoshita, Muneyoshi Kanai, Kaoru Takegawa, Kazuhiro Iwashita","doi":"10.1016/j.jbiosc.2024.10.010","DOIUrl":null,"url":null,"abstract":"<p><p>Breeding sake yeast typically involves generating several gene mutants through UV irradiation or mutagen treatment and selecting those with desired traits based on indicators such as analog resistance. However, this approach often alters traits beyond the target trait due to the random and numerous mutations introduced. To address this issue, we used a previously established metabolome analysis, a sake metabolome analysis, to evaluate the selected yeast strain. After screening for target traits, 110 sake yeast candidates were cultured in yeastnitrogen-based liquid medium using test tubes. The contents were extracted and subjected to comprehensive metabolite analysis through sake metabolome analysis. A phylogenetic tree was then constructed using the metabolome analysis data, enabling the selection of candidate yeasts with only the target traits modified and other traits similar to the parental strain. Selected 21 candidate strains underwent fermentation tests, and the resulting sakes were analyzed using liquid chromatography quadrupole/time-of-flight mass spectrometry (LC-Q/TOF-MS). The findings suggested that the metabolomic data of yeast extracts obtained by simple small-scale culture was similar to the data of resulting sake in the larger-scale fermentation tests. This underscores the utility of metabolome analysis data of yeast extracts in the yeast breeding process, marking the first report proposing the use of the sake metabolome analysis method for yeast breeding.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2024.10.010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breeding sake yeast typically involves generating several gene mutants through UV irradiation or mutagen treatment and selecting those with desired traits based on indicators such as analog resistance. However, this approach often alters traits beyond the target trait due to the random and numerous mutations introduced. To address this issue, we used a previously established metabolome analysis, a sake metabolome analysis, to evaluate the selected yeast strain. After screening for target traits, 110 sake yeast candidates were cultured in yeastnitrogen-based liquid medium using test tubes. The contents were extracted and subjected to comprehensive metabolite analysis through sake metabolome analysis. A phylogenetic tree was then constructed using the metabolome analysis data, enabling the selection of candidate yeasts with only the target traits modified and other traits similar to the parental strain. Selected 21 candidate strains underwent fermentation tests, and the resulting sakes were analyzed using liquid chromatography quadrupole/time-of-flight mass spectrometry (LC-Q/TOF-MS). The findings suggested that the metabolomic data of yeast extracts obtained by simple small-scale culture was similar to the data of resulting sake in the larger-scale fermentation tests. This underscores the utility of metabolome analysis data of yeast extracts in the yeast breeding process, marking the first report proposing the use of the sake metabolome analysis method for yeast breeding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信