Role of route of delivery on Chlamydia abortus vaccine-induced immune responses and genital tract immunity in mice.

IF 2.6 4区 医学 Q3 IMMUNOLOGY
Shakyra Richardson, F N U Medhavi, Tayhlor Tanner, Stephanie Lundy, Yusuf Omosun, Joseph U Igietseme, Francis O Eko
{"title":"Role of route of delivery on Chlamydia abortus vaccine-induced immune responses and genital tract immunity in mice.","authors":"Shakyra Richardson, F N U Medhavi, Tayhlor Tanner, Stephanie Lundy, Yusuf Omosun, Joseph U Igietseme, Francis O Eko","doi":"10.1016/j.micinf.2024.105463","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated if the efficacy of a Chlamydia abortus (Cab) subunit vaccine is influenced by route of administration. Thus, female CBA/J mice were immunized either by mucosal or systemic routes with Vibrio cholerae ghost (VCG)-based vaccine expressing T and B cell epitopes of Cab polymorphic membrane protein (Pmp) 18D, termed rVCG-Pmp18.3. Vaccine evaluation revealed that all routes of vaccine delivery induced a Th1-type antibody response after a prime boost or three-dose immunization regimen. Also, the intranasal and rectal mucosal and intramuscular systemic routes induced cross-reactive neutralizing antibodies against homologous and heterologous Cab strains. Irrespective of the route of immunization, the vaccine elicited a Th1-type cytokine response (IFN-γ/IL-4 >1) in immunized mice. Analysis of reduction in genital Cab burden as an index of protection showed that immunization induced substantial degrees of protection against infection, irrespective of route of delivery with the intranasal and rectal mucosal routes showing superior levels of protection 12 days postchallenge. Furthermore, there was correlation between the humoral and cellular immune response and protection was associated with the Cab-specific serum IgG antibody avidity and IFN-γ. Thus, while route of administration impacts vaccine efficacy, the rVCG-Pmp18.3-induced protective immunity against Cab respiratory infection can be accomplished by both mucosal and systemic immunization.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105463"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105463","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated if the efficacy of a Chlamydia abortus (Cab) subunit vaccine is influenced by route of administration. Thus, female CBA/J mice were immunized either by mucosal or systemic routes with Vibrio cholerae ghost (VCG)-based vaccine expressing T and B cell epitopes of Cab polymorphic membrane protein (Pmp) 18D, termed rVCG-Pmp18.3. Vaccine evaluation revealed that all routes of vaccine delivery induced a Th1-type antibody response after a prime boost or three-dose immunization regimen. Also, the intranasal and rectal mucosal and intramuscular systemic routes induced cross-reactive neutralizing antibodies against homologous and heterologous Cab strains. Irrespective of the route of immunization, the vaccine elicited a Th1-type cytokine response (IFN-γ/IL-4 >1) in immunized mice. Analysis of reduction in genital Cab burden as an index of protection showed that immunization induced substantial degrees of protection against infection, irrespective of route of delivery with the intranasal and rectal mucosal routes showing superior levels of protection 12 days postchallenge. Furthermore, there was correlation between the humoral and cellular immune response and protection was associated with the Cab-specific serum IgG antibody avidity and IFN-γ. Thus, while route of administration impacts vaccine efficacy, the rVCG-Pmp18.3-induced protective immunity against Cab respiratory infection can be accomplished by both mucosal and systemic immunization.

递送途径对流产衣原体疫苗诱导的免疫反应和小鼠生殖道免疫的作用。
我们研究了流产衣原体(Cab)亚单位疫苗的效力是否受到给药途径的影响。因此,雌性CBA/J小鼠通过粘膜或全身途径接种了基于霍乱弧菌鬼影(VCG)的疫苗,该疫苗表达Cab多态膜蛋白(Pmp) 18D的T和B细胞表位,称为rVCG-Pmp18.3。疫苗评估显示,在初始强化或三剂免疫方案后,所有疫苗递送途径均诱导th1型抗体应答。此外,鼻内和直肠粘膜以及肌肉全身途径诱导了针对同源和异源Cab菌株的交叉反应性中和抗体。无论免疫途径如何,疫苗在免疫小鼠中引起th1型细胞因子反应(IFN-γ/IL-4 >1)。对生殖器Cab负荷减少作为保护指标的分析表明,免疫接种诱导了相当程度的抗感染保护,无论通过何种途径接种,鼻内和直肠粘膜途径在接种后12天显示出更高的保护水平。此外,体液免疫应答和细胞免疫应答之间存在相关性,保护作用与cab特异性血清IgG抗体的亲和力和IFN-γ相关。因此,虽然给药途径会影响疫苗的效力,但rvcg - pmp18.3诱导的针对Cab呼吸道感染的保护性免疫可以通过粘膜和全身免疫来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbes and Infection
Microbes and Infection 医学-病毒学
CiteScore
12.60
自引率
1.70%
发文量
90
审稿时长
40 days
期刊介绍: Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular: the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms. the immune response to infection, including pathogenesis and host susceptibility. emerging human infectious diseases. systems immunology. molecular epidemiology/genetics of host pathogen interactions. microbiota and host "interactions". vaccine development, including novel strategies and adjuvants. Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal. Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信