A versatile in vivo platform for reversible control of transgene expression in adult tissues.

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Jumpei Taguchi, Yosuke Yamada, Sho Ohta, Fumie Nakasuka, Takuya Yamamoto, Manabu Ozawa, Yasuhiro Yamada
{"title":"A versatile in vivo platform for reversible control of transgene expression in adult tissues.","authors":"Jumpei Taguchi, Yosuke Yamada, Sho Ohta, Fumie Nakasuka, Takuya Yamamoto, Manabu Ozawa, Yasuhiro Yamada","doi":"10.1016/j.stemcr.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal control of transgenes has advanced biomedical interventions, including in vivo reprogramming, often utilizing the doxycycline (Dox)-mediated Tet-ON system. Here, we developed the Dox-mediated Tet-ON or complementary Tet-OFF counterpart to thoroughly investigate spatial and temporal transgene regulation in adult tissues, revealing inherent limitations and unexpected capabilities of each system. In stark contrast with the Tet-ON system, which was effective only in particular tissues and cell types, primarily epithelial cells, the Tet-OFF system proved capable of gene induction across diverse cell types. Despite the drawback of the Tet-OFF system in inducibility and tunability identified in our study, we demonstrated that use of tetracycline (Tc) effectively addresses these issues, possibly through its pharmacologic properties. Our data suggest that the Tc-mediated Tet-OFF system not only enables more versatile control of transgene expression but also offers a more biocompatible alternative for in vivo applications such as tissue regeneration and organismal rejuvenation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102373"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.11.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal control of transgenes has advanced biomedical interventions, including in vivo reprogramming, often utilizing the doxycycline (Dox)-mediated Tet-ON system. Here, we developed the Dox-mediated Tet-ON or complementary Tet-OFF counterpart to thoroughly investigate spatial and temporal transgene regulation in adult tissues, revealing inherent limitations and unexpected capabilities of each system. In stark contrast with the Tet-ON system, which was effective only in particular tissues and cell types, primarily epithelial cells, the Tet-OFF system proved capable of gene induction across diverse cell types. Despite the drawback of the Tet-OFF system in inducibility and tunability identified in our study, we demonstrated that use of tetracycline (Tc) effectively addresses these issues, possibly through its pharmacologic properties. Our data suggest that the Tc-mediated Tet-OFF system not only enables more versatile control of transgene expression but also offers a more biocompatible alternative for in vivo applications such as tissue regeneration and organismal rejuvenation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信