VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy.

IF 2.9 4区 医学 Q2 GENETICS & HEREDITY
Dhanushkumar T, Sunila B G, Sripad Rama Hebbar, Prasanna Kumar Selvam, Karthick Vasudevan
{"title":"VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy.","authors":"Dhanushkumar T, Sunila B G, Sripad Rama Hebbar, Prasanna Kumar Selvam, Karthick Vasudevan","doi":"10.1007/s00251-024-01361-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML's robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"77 1","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-024-01361-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML's robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.

VaxOptiML:利用机器学习准确预测MHC-I和II表位,优化癌症免疫治疗。
癌症免疫治疗依赖于准确的表位预测来推进疫苗的开发。VaxOptiML(可在https://vaxoptiml.streamlit.app/获得)是一个集成的管道,旨在增强表位预测和优先级。本研究旨在开发和部署一个强大的工具,用于癌症疫苗开发和免疫治疗的高免疫原性和优化的MHC-I和MHC-II t细胞表位的准确预测和优先排序。利用经过实验验证的表位数据集和复杂的机器学习技术,VaxOptiML具有三个模型:从靶序列预测表位,个性化HLA分型,以及基于免疫原性评分对预测表位进行优先排序。我们严格的数据提取,清洗和特征提取过程,加上模型构建,产生卓越的准确性,灵敏度,特异性和F1评分,超越现有的预测方法。全面的可视化表示强调了VaxOptiML在加速癌症免疫治疗表位发现和疫苗设计方面的稳健性和有效性。VaxOptiML通过Streamlit部署供公众使用,提高了研究人员和临床医生的可及性和可用性,显示了癌症免疫治疗的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunogenetics
Immunogenetics 医学-免疫学
CiteScore
6.20
自引率
6.20%
发文量
48
审稿时长
1 months
期刊介绍: Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信