MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Yuan Deng, Ganlan Wang, Dan Hou, Lei Zhang, Chaoying Pei, Guoshuai Yang
{"title":"MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation.","authors":"Yuan Deng, Ganlan Wang, Dan Hou, Lei Zhang, Chaoying Pei, Guoshuai Yang","doi":"10.1007/s11626-024-00986-0","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00986-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信