Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2025-02-05 Epub Date: 2024-12-06 DOI:10.1016/j.neuron.2024.11.003
Ellie Hozhabri, Ariadna Corredera Asensio, Margot Elmaleh, Jeong Woo Kim, Matthew B Phillips, Paul W Frazel, Jordane Dimidschstein, Gord Fishell, Michael A Long
{"title":"Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.","authors":"Ellie Hozhabri, Ariadna Corredera Asensio, Margot Elmaleh, Jeong Woo Kim, Matthew B Phillips, Paul W Frazel, Jordane Dimidschstein, Gord Fishell, Michael A Long","doi":"10.1016/j.neuron.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibitory interneurons are highly heterogeneous circuit elements often characterized by cell biological properties, but how these factors relate to specific roles underlying complex behavior remains poorly understood. Using chronic silicon probe recordings, we demonstrate that distinct interneuron groups perform different inhibitory roles within HVC, a song production circuit in the zebra finch forebrain. To link these functional subtypes to molecular identity, we performed two-photon targeted electrophysiological recordings of HVC interneurons followed by post hoc immunohistochemistry of subtype-specific markers. We find that parvalbumin-expressing interneurons are highly modulated by sensory input and likely mediate auditory gating, whereas a more heterogeneous set of somatostatin-expressing interneurons can strongly regulate activity based on arousal. Using this strategy, we uncover important cell-type-specific network functions in the context of an ethologically relevant motor skill.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"460-470.e7"},"PeriodicalIF":14.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.11.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inhibitory interneurons are highly heterogeneous circuit elements often characterized by cell biological properties, but how these factors relate to specific roles underlying complex behavior remains poorly understood. Using chronic silicon probe recordings, we demonstrate that distinct interneuron groups perform different inhibitory roles within HVC, a song production circuit in the zebra finch forebrain. To link these functional subtypes to molecular identity, we performed two-photon targeted electrophysiological recordings of HVC interneurons followed by post hoc immunohistochemistry of subtype-specific markers. We find that parvalbumin-expressing interneurons are highly modulated by sensory input and likely mediate auditory gating, whereas a more heterogeneous set of somatostatin-expressing interneurons can strongly regulate activity based on arousal. Using this strategy, we uncover important cell-type-specific network functions in the context of an ethologically relevant motor skill.

抑制性中间神经元亚型在斑胸草雀大脑中的差异行为参与。
抑制性中间神经元是高度异质的电路元件,通常具有细胞生物学特性,但这些因素如何与复杂行为背后的特定角色相关仍然知之甚少。通过长期的硅探针记录,我们证明了不同的中间神经元组在斑胸草雀前脑的HVC中执行不同的抑制作用,HVC是一个歌曲产生电路。为了将这些功能亚型与分子身份联系起来,我们对HVC中间神经元进行了双光子靶向电生理记录,然后对亚型特异性标记进行了事后免疫组化。我们发现,表达parvalbumin的中间神经元受到感觉输入的高度调节,并可能介导听觉门控,而表达生长抑素的更异质性的中间神经元可以根据唤醒强烈调节活动。使用这种策略,我们揭示了在动物行为学相关的运动技能背景下重要的细胞类型特异性网络功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信