Sara Signorini, Silvia Pescina, Caterina Ricci, Elena Del Favero, Maria Vivero-Lopez, Carmen Alvarez-Lorenzo, Patrizia Santi, Cristina Padula, Sara Nicoli
{"title":"Innovative formulations for the ocular delivery of coenzyme Q10.","authors":"Sara Signorini, Silvia Pescina, Caterina Ricci, Elena Del Favero, Maria Vivero-Lopez, Carmen Alvarez-Lorenzo, Patrizia Santi, Cristina Padula, Sara Nicoli","doi":"10.1007/s13346-024-01739-y","DOIUrl":null,"url":null,"abstract":"<p><p>Coenzyme Q10 (CoQ10) is a lipophilic antioxidant agent that plays a crucial role in the mitochondrial electron transport chain. The neuroprotective role of CoQ10, countering mitochondrial dysfunction and oxidative stress, suggests its potential as an adjuvant for ocular neurodegenerative diseases linked to retinal cell loss. However, despite its promising properties, ocular barriers pose challenges for effective delivery. Therefore, the present work aimed to identify new ocular delivery strategies to improve the therapeutic potential of CoQ10 by increasing its ocular bioavailability at the posterior segment and supporting its controlled release. Polymeric micelles of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as carriers for the loading of CoQ10, increasing its solubility and promoting its penetration through ocular tissues. After their characterization by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), loaded micelles were applied to porcine sclera and choroid to confirm their ex vivo retention and permeation capacity. To ensure a controlled release, they were then loaded into a crosslinked polymer film, which was characterized in terms of mechanical properties, swelling degree and release profiles of TPGS and CoQ10. The biocompatibility of this platform was tested by the HET-CAM assay, and ex vivo studies confirmed its ocular potential.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2415-2430"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01739-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coenzyme Q10 (CoQ10) is a lipophilic antioxidant agent that plays a crucial role in the mitochondrial electron transport chain. The neuroprotective role of CoQ10, countering mitochondrial dysfunction and oxidative stress, suggests its potential as an adjuvant for ocular neurodegenerative diseases linked to retinal cell loss. However, despite its promising properties, ocular barriers pose challenges for effective delivery. Therefore, the present work aimed to identify new ocular delivery strategies to improve the therapeutic potential of CoQ10 by increasing its ocular bioavailability at the posterior segment and supporting its controlled release. Polymeric micelles of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as carriers for the loading of CoQ10, increasing its solubility and promoting its penetration through ocular tissues. After their characterization by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), loaded micelles were applied to porcine sclera and choroid to confirm their ex vivo retention and permeation capacity. To ensure a controlled release, they were then loaded into a crosslinked polymer film, which was characterized in terms of mechanical properties, swelling degree and release profiles of TPGS and CoQ10. The biocompatibility of this platform was tested by the HET-CAM assay, and ex vivo studies confirmed its ocular potential.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.