In vitro bonding strength of denture teeth to denture base in CAD/CAM-milled, 3D-printed and conventional manufacturing processes.

IF 3.1 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Marcel Löscher, Sebastian Hahnel, Reinhold Lang, Martin Rosentritt
{"title":"In vitro bonding strength of denture teeth to denture base in CAD/CAM-milled, 3D-printed and conventional manufacturing processes.","authors":"Marcel Löscher, Sebastian Hahnel, Reinhold Lang, Martin Rosentritt","doi":"10.1007/s00784-024-06099-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the survival rates and fracture resistance of dentures made from different teeth (milled, 3D-printed, fabricated), bases (milled, 3D-printed, pressed) and bonding combinations.</p><p><strong>Materials and methods: </strong>Specimens (11 groups, n = 8 per group) were fabricated from combinations with a denture tooth (anterior tooth 21) and a denture base material. The groups consisted of combinations of teeth (6x), denture base materials (5x) and adhesive bonding options (4x). The teeth were printed, milled or prefabricated. The denture base was produced conventionally or was milled or 3D-printed. Two dentures were milled from one industrially produced block. The dentures were subjected to thermal and mechanical loading (TCML) and subsequent fracture test.</p><p><strong>Statistics: </strong>ANOVA, Bonferroni-test, Kaplan-Meier survival, Pearson correlation; α = 0.05.</p><p><strong>Results: </strong>Mean loading cycles varied between 221,869 (8), 367,610 (11), 513,616 (6) 875,371 (3) and 9,000,030 (4). ANOVA revealed significant (p ≤ 0.001) different surviving cycles. Log Rank test showed significantly (p < 0.001) different loading cycles. Fracture force after TCML varied between 129.8 +/- 97.1 N (3) and 780.8 +/- 62.5 N (9). ANOVA comparison revealed significant (p < 0.001) different fracture loadings between the individual systems. Correlation was found between fracture force and loading cycles (0.587, p < 0.001).</p><p><strong>Conclusions: </strong>Different survival rates and fracture forces were found for dentures made of different teeth (milled, 3D-printed, prefabricated), bases (milled, 3D-printed, pressed) and bonding combinations. Milled, pressed and prefabricated systems provided longer survival and fracture force than the other tested systems.</p><p><strong>Clinical relevance: </strong> Optimal tooth-base combinations can help to produce a denture that is stable and resistant during clinical application.</p>","PeriodicalId":10461,"journal":{"name":"Clinical Oral Investigations","volume":"29 1","pages":"4"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00784-024-06099-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To investigate the survival rates and fracture resistance of dentures made from different teeth (milled, 3D-printed, fabricated), bases (milled, 3D-printed, pressed) and bonding combinations.

Materials and methods: Specimens (11 groups, n = 8 per group) were fabricated from combinations with a denture tooth (anterior tooth 21) and a denture base material. The groups consisted of combinations of teeth (6x), denture base materials (5x) and adhesive bonding options (4x). The teeth were printed, milled or prefabricated. The denture base was produced conventionally or was milled or 3D-printed. Two dentures were milled from one industrially produced block. The dentures were subjected to thermal and mechanical loading (TCML) and subsequent fracture test.

Statistics: ANOVA, Bonferroni-test, Kaplan-Meier survival, Pearson correlation; α = 0.05.

Results: Mean loading cycles varied between 221,869 (8), 367,610 (11), 513,616 (6) 875,371 (3) and 9,000,030 (4). ANOVA revealed significant (p ≤ 0.001) different surviving cycles. Log Rank test showed significantly (p < 0.001) different loading cycles. Fracture force after TCML varied between 129.8 +/- 97.1 N (3) and 780.8 +/- 62.5 N (9). ANOVA comparison revealed significant (p < 0.001) different fracture loadings between the individual systems. Correlation was found between fracture force and loading cycles (0.587, p < 0.001).

Conclusions: Different survival rates and fracture forces were found for dentures made of different teeth (milled, 3D-printed, prefabricated), bases (milled, 3D-printed, pressed) and bonding combinations. Milled, pressed and prefabricated systems provided longer survival and fracture force than the other tested systems.

Clinical relevance:  Optimal tooth-base combinations can help to produce a denture that is stable and resistant during clinical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Oral Investigations
Clinical Oral Investigations 医学-牙科与口腔外科
CiteScore
6.30
自引率
5.90%
发文量
484
审稿时长
3 months
期刊介绍: The journal Clinical Oral Investigations is a multidisciplinary, international forum for publication of research from all fields of oral medicine. The journal publishes original scientific articles and invited reviews which provide up-to-date results of basic and clinical studies in oral and maxillofacial science and medicine. The aim is to clarify the relevance of new results to modern practice, for an international readership. Coverage includes maxillofacial and oral surgery, prosthetics and restorative dentistry, operative dentistry, endodontics, periodontology, orthodontics, dental materials science, clinical trials, epidemiology, pedodontics, oral implant, preventive dentistiry, oral pathology, oral basic sciences and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信