{"title":"Neuroprotective effect of naringin by modulation of klotho and HMGB1- TLR4 axis in PTZ-induced kindling in mice.","authors":"Parvej Khan, Nilanjan Saha, Nidhi","doi":"10.1016/j.bbrc.2024.151080","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Naringin has demonstrated various neuroprotective effects; however, its anti-inflammatory and cognitive properties, particularly through the regulation of HMGB1-TLR4 and Klotho, have not been explored in the context of epilepsy.</p><p><strong>Method: </strong>Kindling was induced in Swiss albino mice by administering pentylenetetrazole (PTZ) 25 mg/kg intraperitoneally (i.p.). Naringin (40 mg/kg and 80 mg/kg) was administered orally for 6 weeks. The severity of seizures was assessed using the Racine scale. Cognitive function was evaluated by measuring step-down latency and transfer latency. The levels of GABA, glutamate, IL-1β, IL-1R1, IL-6, HMGB1, TLR4, TNF-α, Klotho, and ADAM-10 were quantified using enzyme-linked immunosorbent assay (ELISA) techniques.</p><p><strong>Results: </strong>Naringin significantly attenuated PTZ-induced seizures at both doses (p < 0.01 for 40 mg/kg; p < 0.0001 for 80 mg/kg) compared to the PTZ group. Additionally, it enhanced retention latency in both step-down latency (p < 0.01 for 40 mg/kg; p < 0.0001 for 80 mg/kg) and transfer latency (p < 0.05 for both doses) compared to the PTZ group. Furthermore, it increased Klotho and ADAM-10 levels in both the hippocampus and cortex (p < 0.01 for 40 mg/kg; p < 0.001 for 80 mg/kg, respectively). Levels of HMGB1, TLR4, and pro-inflammatory cytokines were significantly decreased in both the hippocampus and cortex compared to the PTZ group.</p><p><strong>Conclusion: </strong>Naringin exhibited anti-epileptic effects by regulating neurotransmitter levels and preventing PTZ-induced kindling. Additionally, it demonstrated neuroprotective effects on cognition and attenuated neuroinflammation. These findings suggest that naringin may be a potential therapeutic agent for epilepsy-associated cognitive dysfunction, warranting further studies for clinical translation.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"742 ","pages":"151080"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151080","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Naringin has demonstrated various neuroprotective effects; however, its anti-inflammatory and cognitive properties, particularly through the regulation of HMGB1-TLR4 and Klotho, have not been explored in the context of epilepsy.
Method: Kindling was induced in Swiss albino mice by administering pentylenetetrazole (PTZ) 25 mg/kg intraperitoneally (i.p.). Naringin (40 mg/kg and 80 mg/kg) was administered orally for 6 weeks. The severity of seizures was assessed using the Racine scale. Cognitive function was evaluated by measuring step-down latency and transfer latency. The levels of GABA, glutamate, IL-1β, IL-1R1, IL-6, HMGB1, TLR4, TNF-α, Klotho, and ADAM-10 were quantified using enzyme-linked immunosorbent assay (ELISA) techniques.
Results: Naringin significantly attenuated PTZ-induced seizures at both doses (p < 0.01 for 40 mg/kg; p < 0.0001 for 80 mg/kg) compared to the PTZ group. Additionally, it enhanced retention latency in both step-down latency (p < 0.01 for 40 mg/kg; p < 0.0001 for 80 mg/kg) and transfer latency (p < 0.05 for both doses) compared to the PTZ group. Furthermore, it increased Klotho and ADAM-10 levels in both the hippocampus and cortex (p < 0.01 for 40 mg/kg; p < 0.001 for 80 mg/kg, respectively). Levels of HMGB1, TLR4, and pro-inflammatory cytokines were significantly decreased in both the hippocampus and cortex compared to the PTZ group.
Conclusion: Naringin exhibited anti-epileptic effects by regulating neurotransmitter levels and preventing PTZ-induced kindling. Additionally, it demonstrated neuroprotective effects on cognition and attenuated neuroinflammation. These findings suggest that naringin may be a potential therapeutic agent for epilepsy-associated cognitive dysfunction, warranting further studies for clinical translation.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics