{"title":"Presence of Clostridioides difficile on spinach, carrots, cheese and milk in Turkey.","authors":"Gizem Taylan Yalçın, Melike Nur Tosun Demir, Gizem Korkmazer, Alper Akçalı, Nükhet Nilüfer Demirel Zorba","doi":"10.1016/j.anaerobe.2024.102933","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The presence of Clostridioides difficile in water, soil, fertilizers, and animal feces suggests the potential existence of C. difficile in foods that come into contact with these sources or become contaminated through indirect means.</p><p><strong>Material & method: </strong>A total of 431 samples, consisting of spinach and carrots and raw milk and cheese obtained from cows, goats, buffalo, and sheep, were examined for the presence of C. difficile. Isolates were identified by real-time PCR, ribotyped, and their toxin profiles were determined. Antibiotic susceptibility to vancomycin, clindamycin, and metronidazole was evaluated using the E-test.</p><p><strong>Results: </strong>C. difficile was detected in 3.27 % (4/122) of spinach, 1.85 % (2/108) of carrots, and 2.19 % (2/91) of milk samples. No C. difficile was detected in the cheeses (n = 110). All isolates were obtained from different fields/farms. Only one isolate (from spinach) carried the tcdA and tcdB toxin genes. Six different PCR ribotypes were detected, with two (001, 060) being identified. All isolates were sensitive to vancomycin, clindamycin, and metronidazole.</p><p><strong>Conclusion: </strong>The prevalence of C. difficile in spinach, carrot, and milk samples from selected regions was low, and nontoxigenic strains were prevalent. Despite the low prevalence, the detection of C. difficile in these foods highlights the potential risk of foodborne transmission of this pathogen and underscores the need for monitoring and control strategies to ensure food safety.</p>","PeriodicalId":8050,"journal":{"name":"Anaerobe","volume":" ","pages":"102933"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anaerobe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.anaerobe.2024.102933","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The presence of Clostridioides difficile in water, soil, fertilizers, and animal feces suggests the potential existence of C. difficile in foods that come into contact with these sources or become contaminated through indirect means.
Material & method: A total of 431 samples, consisting of spinach and carrots and raw milk and cheese obtained from cows, goats, buffalo, and sheep, were examined for the presence of C. difficile. Isolates were identified by real-time PCR, ribotyped, and their toxin profiles were determined. Antibiotic susceptibility to vancomycin, clindamycin, and metronidazole was evaluated using the E-test.
Results: C. difficile was detected in 3.27 % (4/122) of spinach, 1.85 % (2/108) of carrots, and 2.19 % (2/91) of milk samples. No C. difficile was detected in the cheeses (n = 110). All isolates were obtained from different fields/farms. Only one isolate (from spinach) carried the tcdA and tcdB toxin genes. Six different PCR ribotypes were detected, with two (001, 060) being identified. All isolates were sensitive to vancomycin, clindamycin, and metronidazole.
Conclusion: The prevalence of C. difficile in spinach, carrot, and milk samples from selected regions was low, and nontoxigenic strains were prevalent. Despite the low prevalence, the detection of C. difficile in these foods highlights the potential risk of foodborne transmission of this pathogen and underscores the need for monitoring and control strategies to ensure food safety.
期刊介绍:
Anaerobe is essential reading for those who wish to remain at the forefront of discoveries relating to life processes of strictly anaerobes. The journal is multi-disciplinary, and provides a unique forum for those investigating anaerobic organisms that cause infections in humans and animals, as well as anaerobes that play roles in microbiomes or environmental processes.
Anaerobe publishes reviews, mini reviews, original research articles, notes and case reports. Relevant topics fall into the broad categories of anaerobes in human and animal diseases, anaerobes in the microbiome, anaerobes in the environment, diagnosis of anaerobes in clinical microbiology laboratories, molecular biology, genetics, pathogenesis, toxins and antibiotic susceptibility of anaerobic bacteria.