Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6.

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Naoya Watanabe, Yukiko K Kaneko, Hisamitsu Ishihara, Ryota Shizu, Kouichi Yoshinari, Momoka Yamaguchi, Toshihide Kimura, Tomohisa Ishikawa
{"title":"Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6.","authors":"Naoya Watanabe, Yukiko K Kaneko, Hisamitsu Ishihara, Ryota Shizu, Kouichi Yoshinari, Momoka Yamaguchi, Toshihide Kimura, Tomohisa Ishikawa","doi":"10.1016/j.bbrc.2024.151109","DOIUrl":null,"url":null,"abstract":"<p><p>Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"742 ","pages":"151109"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信