Yanyan Wang, Juan Wen, Binxin Guo, Wenqi Zheng, Junrui Wang
{"title":"Genotypic and phenotypic diversity of carbapenem-resistant Bacteroides fragilis strains collected from different clinical origins.","authors":"Yanyan Wang, Juan Wen, Binxin Guo, Wenqi Zheng, Junrui Wang","doi":"10.1016/j.anaerobe.2024.102924","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Strains of carbapenem-resistant Bacteroides fragilis have frequently emerged in recent years. In China, data on the genotypic and phenotypic characteristics of these antimicrobial-resistant anaerobic bacteria are scarce. Thus, the aim of this study was to characterize clinical isolates of carbapenem-resistant B. fragilis collected from a tertiary hospital in China using whole genome sequencing (WGS), phenotypic susceptibility tests, and a biofilm formation assay.</p><p><strong>Methods: </strong>We analyzed 49 B. fragilis strains with different antimicrobial resistance profiles. Antimicrobial susceptibility was determined using the agar dilution method and biofilm formation using a crystal violet assay. Genomic characteristics were analyzed using WGS, and the transcription level of cfiA, which is responsible for carbapenem resistance, was determined using quantitative reverse transcription polymerase chain reaction (PCR). Carbapenem-sensitive isolates were used as controls.</p><p><strong>Results: </strong>All 49 B. fragilis isolates were biofilm producers and the percentage of carbapenem-resistant isolates was 42.86 % (21/49). The percentage of carbapenem-resistant isolates with medium-to-strong biofilm production ability was significantly lower than that of carbapenem-sensitive isolates (19.1 % vs. 88.9 %, p < 0.01). None of the carbapenem-resistant B. fragilis isolates carried bft. In contrast, 53.6 % (15/28) of the carbapenem-sensitive isolates carried bft, and all of them were fpn(+). All carbapenem-resistant isolates (21/21, 100 %) harbored cfiA and its upstream insertion sequence (IS) element. Three isolates (BF058, BF059, and BF060) carried the IS613 element, which was not immediately adjacent upstream to cfiA but was separated by a 1000-kb sequence encoding vatD. The quantitative PCR assay results revealed the elevated expression of cfiA mRNA among carbapenem-resistant isolates, although the relative expression levels varied greatly among isolates. However, a significant correlation between the relative expression level of cfiA mRNA and phenotypic carbapenem resistance was observed.</p><p><strong>Conclusions: </strong>Carbapenem-resistant B. fragilis isolates carried a low frequency of virulence-related genes and showed weaker biofilm formation ability compared with carbapenem-sensitive B. fragilis isolates. CfiA was the dominant mediator of carbapenem resistance in B. fragilis. This study was the first to identify the structural plasticity of the cfiA-IS element, emphasizing the diverse and complex evolution of carbapenem resistance in B. fragilis, which warrants further investigation.</p>","PeriodicalId":8050,"journal":{"name":"Anaerobe","volume":" ","pages":"102924"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anaerobe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.anaerobe.2024.102924","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Strains of carbapenem-resistant Bacteroides fragilis have frequently emerged in recent years. In China, data on the genotypic and phenotypic characteristics of these antimicrobial-resistant anaerobic bacteria are scarce. Thus, the aim of this study was to characterize clinical isolates of carbapenem-resistant B. fragilis collected from a tertiary hospital in China using whole genome sequencing (WGS), phenotypic susceptibility tests, and a biofilm formation assay.
Methods: We analyzed 49 B. fragilis strains with different antimicrobial resistance profiles. Antimicrobial susceptibility was determined using the agar dilution method and biofilm formation using a crystal violet assay. Genomic characteristics were analyzed using WGS, and the transcription level of cfiA, which is responsible for carbapenem resistance, was determined using quantitative reverse transcription polymerase chain reaction (PCR). Carbapenem-sensitive isolates were used as controls.
Results: All 49 B. fragilis isolates were biofilm producers and the percentage of carbapenem-resistant isolates was 42.86 % (21/49). The percentage of carbapenem-resistant isolates with medium-to-strong biofilm production ability was significantly lower than that of carbapenem-sensitive isolates (19.1 % vs. 88.9 %, p < 0.01). None of the carbapenem-resistant B. fragilis isolates carried bft. In contrast, 53.6 % (15/28) of the carbapenem-sensitive isolates carried bft, and all of them were fpn(+). All carbapenem-resistant isolates (21/21, 100 %) harbored cfiA and its upstream insertion sequence (IS) element. Three isolates (BF058, BF059, and BF060) carried the IS613 element, which was not immediately adjacent upstream to cfiA but was separated by a 1000-kb sequence encoding vatD. The quantitative PCR assay results revealed the elevated expression of cfiA mRNA among carbapenem-resistant isolates, although the relative expression levels varied greatly among isolates. However, a significant correlation between the relative expression level of cfiA mRNA and phenotypic carbapenem resistance was observed.
Conclusions: Carbapenem-resistant B. fragilis isolates carried a low frequency of virulence-related genes and showed weaker biofilm formation ability compared with carbapenem-sensitive B. fragilis isolates. CfiA was the dominant mediator of carbapenem resistance in B. fragilis. This study was the first to identify the structural plasticity of the cfiA-IS element, emphasizing the diverse and complex evolution of carbapenem resistance in B. fragilis, which warrants further investigation.
期刊介绍:
Anaerobe is essential reading for those who wish to remain at the forefront of discoveries relating to life processes of strictly anaerobes. The journal is multi-disciplinary, and provides a unique forum for those investigating anaerobic organisms that cause infections in humans and animals, as well as anaerobes that play roles in microbiomes or environmental processes.
Anaerobe publishes reviews, mini reviews, original research articles, notes and case reports. Relevant topics fall into the broad categories of anaerobes in human and animal diseases, anaerobes in the microbiome, anaerobes in the environment, diagnosis of anaerobes in clinical microbiology laboratories, molecular biology, genetics, pathogenesis, toxins and antibiotic susceptibility of anaerobic bacteria.