{"title":"Serine protease inhibitor AEBSF(4-(2-aminoethyl)-benzenesulfonyl fluoride) decreased ischemic brain injury through inhibiting endoplasmic reticulum stress, oxidative stress, and autophagy in rats.","authors":"Qi An, Yuequan Zhu, Wenjuan Shi, Wei Li, Xueqi Yang, Minqi Huang, Yakun Li, Yongmei Zhao","doi":"10.1016/j.brainres.2024.149382","DOIUrl":null,"url":null,"abstract":"<p><p>4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown. In this study,we reported the neuroprotective effect of AEBSF against cerebral ischemia/reperfusion injury and explored the mechanisms involved, particularly its role in reducing ER stress, oxidative stress and autophagy. Rats were pretreated with AEBSF or a vehicle before a 90 min middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Our results demonstrate that AEBSF treatment reduced infarct volume and improved neurological function compared to vehicle treated rats after 24 h of reperfusion. Furthermore,AEBSF treatment decreased the expression of caspase-3, suggesting a decrease in neuronal apoptosis. Additionally, AEBSF treatment lowered levels of key ER stress biomarkers, including glucose-regulated protein 78 (GRP78), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), and CCAAT-enhancer-binding protein homologous protein (CHOP), while the levels of inositol-requiring enzyme 1α (IRE1α) remained unchanged. AEBSF also decreased the oxidative stress biomarker neuronal nitric oxide synthase (nNOS) and its related molecule pro-MMP-9. Importantly, treatment with AEBSF reversed the trends of autophagy biomarker LC3B II/α-tubulin, Beclin1, and SQSTM1 at 24 h after reperfusion. In conclusion, AEBSF significantly mitigates ischemic brain damage and promotes neurological recovery by inhibiting ER stress, oxidative stress, and autophagy, highlighting its potential as a therapeutic option for ischemic stroke.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149382"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2024.149382","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown. In this study,we reported the neuroprotective effect of AEBSF against cerebral ischemia/reperfusion injury and explored the mechanisms involved, particularly its role in reducing ER stress, oxidative stress and autophagy. Rats were pretreated with AEBSF or a vehicle before a 90 min middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Our results demonstrate that AEBSF treatment reduced infarct volume and improved neurological function compared to vehicle treated rats after 24 h of reperfusion. Furthermore,AEBSF treatment decreased the expression of caspase-3, suggesting a decrease in neuronal apoptosis. Additionally, AEBSF treatment lowered levels of key ER stress biomarkers, including glucose-regulated protein 78 (GRP78), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), and CCAAT-enhancer-binding protein homologous protein (CHOP), while the levels of inositol-requiring enzyme 1α (IRE1α) remained unchanged. AEBSF also decreased the oxidative stress biomarker neuronal nitric oxide synthase (nNOS) and its related molecule pro-MMP-9. Importantly, treatment with AEBSF reversed the trends of autophagy biomarker LC3B II/α-tubulin, Beclin1, and SQSTM1 at 24 h after reperfusion. In conclusion, AEBSF significantly mitigates ischemic brain damage and promotes neurological recovery by inhibiting ER stress, oxidative stress, and autophagy, highlighting its potential as a therapeutic option for ischemic stroke.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.