{"title":"Molecular mechanism of action of tetracycline-loaded calcium phosphate nanoparticle to kill multi-drug resistant bacteria.","authors":"Susmita Nandi, Soumajit Chakrabarty, Pathikrit Bandopadhyay, Dipanwita Mandal, Md Azaharuddin, Abhijit Das, Anabadya Pal, Sourav Ghosh, Sanchita Nandy, Upasana Sett, Tarakdas Basu","doi":"10.1016/j.bbagen.2024.130733","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In earlier communications we reported about nanonization of the antibiotic tetracycline (Tet) by entrapping it within the biocompatible and highly membrane penetrating nano-carrier molecule - calcium phosphate nanoparticle (CPNP). The synthesized Tet-CPNP killed different Tet-resistant bacteria in vitro as well as in vivo (in mice). Moreover, such nanonized tetracycline had bactericidal mode of action, in contrast to bacteriostatic mode of action of bulk tetracycline. The present study unveils the molecular mechanism of action of Tet-CPNP.</p><p><strong>Methods: </strong>This study was conducted to investigate the mode of interaction of Tet-CPNP/Tet with intact 70S bacterial ribosome by the techniques of spectrophotometry, spectrofluorimetry, circular dichroism, gel electrophoresis and transmission electron microscopy.</p><p><strong>Results: </strong>Experimental observations revealed that (i) binding affinity of Tet-CPNP was higher than that of only tetracycline with ribosome and (ii) binding of Tet-CPNP, but not of tetracycline, loosened ribosome conformation, finally disrupting and degrading ribosome.</p><p><strong>Conclusion: </strong>Bactericidal action of Tet-CPNP was rooted from degradation of cellular ribosomes and thereby blockage of protein translation phenomenon. Therefore, the problem of obsolescence of tetracycline, a cheap, first-generation, broad-spectrum antibiotic, due to generation of huge tetracycline-resistant bacteria, can be removed by the Tet-CPNP.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130733"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2024.130733","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In earlier communications we reported about nanonization of the antibiotic tetracycline (Tet) by entrapping it within the biocompatible and highly membrane penetrating nano-carrier molecule - calcium phosphate nanoparticle (CPNP). The synthesized Tet-CPNP killed different Tet-resistant bacteria in vitro as well as in vivo (in mice). Moreover, such nanonized tetracycline had bactericidal mode of action, in contrast to bacteriostatic mode of action of bulk tetracycline. The present study unveils the molecular mechanism of action of Tet-CPNP.
Methods: This study was conducted to investigate the mode of interaction of Tet-CPNP/Tet with intact 70S bacterial ribosome by the techniques of spectrophotometry, spectrofluorimetry, circular dichroism, gel electrophoresis and transmission electron microscopy.
Results: Experimental observations revealed that (i) binding affinity of Tet-CPNP was higher than that of only tetracycline with ribosome and (ii) binding of Tet-CPNP, but not of tetracycline, loosened ribosome conformation, finally disrupting and degrading ribosome.
Conclusion: Bactericidal action of Tet-CPNP was rooted from degradation of cellular ribosomes and thereby blockage of protein translation phenomenon. Therefore, the problem of obsolescence of tetracycline, a cheap, first-generation, broad-spectrum antibiotic, due to generation of huge tetracycline-resistant bacteria, can be removed by the Tet-CPNP.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.